精英家教网 > 高中数学 > 题目详情

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

(1);(2)

解析试题分析:(1)由题意可知,抛物线的开口向右,所以可设抛物线的标准方程为:,因为抛物线过点,从而求出方程;(2)设出两点坐标,联立直线和抛物线的方程,化简整理为一元二次方程,根据韦达定理写出两根之和与两根之积,由斜率公式写出,利用两根和与两根之积求出其乘积.
试题解析:(1)设抛物线的标准方程为:,因为抛物线过点,所以
解得,所以抛物线的标准方程为:
(2)设两点的坐标分别为,由题意知:
 消去得: ,根据韦达定理知:
所以,

考点:本题主要考查了抛物线的标准方程,以及直线与抛物线的位置关系,考查了方程的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(13分) 已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线 的焦点。

(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足,试问直线AB的斜率是否为定值,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.

(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线上有一点,到焦点的距离为.
(Ⅰ)求的值.
(Ⅱ)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为
(1)求椭圆方程;
(2)过点的直线与椭圆交于不同的两点,当面积最大时,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

矩形的中心在坐标原点,边轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线,,的交点依次为.

(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段等分点从左向右依次为,线段等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,过点作圆的切线交椭圆于A,B两点。
(1)求椭圆的焦点坐标和离心率;
(2)求的取值范围;
(3)将表示为的函数,并求的最大值.

查看答案和解析>>

同步练习册答案