如图,四棱锥中,底面为平行四边形,
底面
(1)证明:平面平面;
(2)若二面角大小为,求与平面所成角的正弦值.
(1)详见解析;(2).
解析试题分析:(1)根据所给数值,满足勾股定理,所以,,又根据底面,易证,所以面,然后根据面面垂直的判定定理,面,即证两面垂直;
(2) ∠即为二面角的平面角,即∠根据已知两两垂直,所以可以以为原点,如图建立空间直角坐标系,设平面的法向量为,利用公式
(1)∵ ∴
又∵⊥底面 ∴
又∵ ∴平面
而平面 ∴平面平面 4分
(2)由(1)所证,平面 ,所以∠即为二面角的平面角,即∠
而,所以
因为底面为平行四边形,所以,
分别以、、为轴、轴、轴建立空间直角坐标系.
则,,, ,
所以,,,,
设平面的法向量为,则即
令则
∴与平面所成角的正弦值为 12分
考点:1.面面垂直的判定定理;2.空间向量解决线面角.
科目:高中数学 来源: 题型:解答题
如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•湖北)如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(1)当CF=1时,求证:EF⊥A1C;
(2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)证明:PB//平面EAC;
(2)若AD="2AB=2," 求直线PB与平面ABCD所成角的正切值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com