精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,角A、B、C所对的边分别为a、b、c,且 =
(1)求角A的大小;
(2)若a=4,求 b﹣c的最大值.

【答案】
(1)解:∵ =

∴由正弦定理可得:sinBcosA= sinAsinB,

∵B为三角形内角,sinB≠0,

∴可得:tanA=

∵A∈(0,π),

∴A=


(2)解:∵a=4,由正弦定理可得 ,可得:b=8sinB,c=8sinC,

b﹣c=8( sinB﹣sinC)=8( sinB﹣sin( ﹣B))=8sin(B﹣ ),

∵B∈(0, ),B﹣ ∈(﹣ ),

b﹣c=8sin(B﹣ )≤8,即最大值为8


【解析】(1)由正弦定理化简已知等式可得sinBcosA= sinAsinB,由sinB≠0,可得:tanA= ,结合范围A∈(0,π),即可求A的值.(2)由正弦定理可得:b=8sinB,c=8sinC,利用两角和的正弦函数公式化简可得 b﹣c=8sin(B﹣ ),由范围B∈(0, ),可得B﹣ ∈(﹣ ),利用正弦函数的图象和性质即可得解.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(1)求出曲线C2的直角坐标方程;
(2)若C1与C2相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1= +(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).
(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;
(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的k的值是(

A.10
B.11
C.12
D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(1)请在图中完成被调查人员年龄的频率分布直方图;

(2)若从年龄在 两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,斜率为的直线与椭圆交于 两点,点在直线的左上方.若,且直线 分别与轴交于 点,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+ax+b的值域为(﹣∞,0],若关x的不等式 的解集为(m﹣4,m+1),则实数c的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:f(x)=2 cos2x+sin2x﹣ +1(x∈R).求:
(1)f(x)的最小正周期;
(2)f(x)的单调增区间;
(3)若x∈[﹣ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣a|≤3,x∈R},B={x|x2﹣3x﹣4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案