已知函数是定义在上的单调函数,且对任意的正数都有若数列的前项和为,且满足则为( )
A. | B. | C. | D. |
D
解析试题分析:因为对任意的正数x,y都有
又,所以f(sn+2)=f(3)+f(an)=f(3•an),
因为函数f(x)是定义在(0,+∞)上的单调函数,
所以sn+2=3an………………………………①
当n=1时,s1+2=a1+2=3a1,解得an=1;
当n≥2时,sn-1+2=3an-1………………②
①-②得:an=3an-3an-1
即,所以数列{an}是一个以1为首项,以为公比的等比数列,所以=。
考点:数列与函数的综合应用;数列通项公式的求法。
点评:本题以抽象函数为载体考查了等比数列通项公式的求法,其中根据已知得到f(sn+2)=f(3)+f(an)=f(3•an)是解答的关键。
科目:高中数学 来源: 题型:单选题
定义域为[]的函数图像的两个端点为A、B,M(x,y)是图象上任意一点,其中.已知向量,若不等式恒成立, 则称函数在[]上“k阶线性近似”.若函数在[1,2]上“k阶线性近似”,则实数k的取值范围为( )
A.[0,+∞) B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com