精英家教网 > 高中数学 > 题目详情
6.利用均值不等式证明:(1+$\frac{1}{n}$)n<(1+$\frac{1}{n+1}$)n+1 (n=1,2,…)

分析 利用n个正数的算术平均数与这n个正数的几何平均数间的大小关系,证得 ${{[(1+\frac{1}{n})}^{n}]}^{\frac{1}{n+1}}$<1+$\frac{1}{n+1}$,即可得出结论.

解答 证明:∵${{[(1+\frac{1}{n})}^{n}]}^{\frac{1}{n+1}}$=${[(1+\frac{1}{n})•(1+\frac{1}{n})•(1+\frac{1}{n})…(1+\frac{1}{n})×1]}^{\frac{1}{n+1}}$<$\frac{(1+\frac{1}{n})•(1+\frac{1}{n})…(1+\frac{1}{n})+1}{n+1}$=$\frac{n+2}{n+1}$=1+$\frac{1}{n+1}$,
∴:(1+$\frac{1}{n}$)n<(1+$\frac{1}{n+1}$)n+1

点评 本题主要考查n个正数的算术平均数与这n个正数的几何平均数间的大小关系,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.有下列四个命题:
①“若xy=1,则x,y互为倒数”的逆命题;
②“面积相等的三角形全等”的否命题;
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;
④“若A∩B=B,则A?B”的逆否命题.
其中为真命题的是(  )
A.①②B.②③C.D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知A(-2,0),B(2,-2),C(0,5),过点M(-4,2)且平行于AB的直线l将△ABC分成两部分,求此两部分面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若等差数列{an}满足a12+a32=2,则$\frac{{{a}_{3}}^{2}+{{a}_{4}}^{2}}{{{a}_{4}}^{2}+{{a}_{5}}^{2}}$的取值范围是(  )
A.[1,3]B.[$\sqrt{5}$-1,$\sqrt{5}$十1]C.[3-2$\sqrt{2}$,3+2$\sqrt{2}$]D.[4-2$\sqrt{3}$,4+2$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数与函数y=x是相同的函数是(  )
A.y=$\frac{{x}^{2}}{x}$B.y=($\sqrt{x}$)2C.y=($\root{3}{x}$)3D.y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|y=$\sqrt{\frac{1}{x+1}-1}$},B={x|[x-(a+1)]{x-(a+4)]<0}
(1)求集合A及集合B
(2)若B∩A=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线以两坐标轴为对称轴,点($\frac{16}{5}$,$\frac{12}{5}$)是其准线和渐近线的交点,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,已知点O、A、B、C分别表示复数0,1+i,2+3i,3+2i,点P(x,y)在三边围成的区域(含边界)上.
(Ⅰ)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,求|$\overrightarrow{OP}$|;
(Ⅱ)设$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),用x,y表示m-n,并求m-n的最大值.

查看答案和解析>>

同步练习册答案