试题解析:解:(1)假设函数f(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直, 则A、B两点的纵坐标相同,设它们的横坐标分别为 x1和x2,且x1<x2. 则f(x1)﹣f(x2)=f(x1)+f(﹣x2)=[x1+(﹣x2)]. 由于 >0,且[x1+(﹣x2)]<0,∴f(x1)﹣f(x2)<0, 故函数f(x)在[﹣1,1]上是增函数. 这与假设矛盾,故假设不成立,即 函数f(x)的图象上不存在两个不同的点A,B,使直线AB恰好与y轴垂直. (2)由于 对所有x∈[﹣1,1],a∈[﹣1,1]恒成立, ∴故函数f(x)的最大值小于或等于2(m2+2am+1). 由于由(1)可得,函数f(x)是[﹣1,1]的增函数,故函数f(x)的最大值为f(1)=2, ∴2(m2+2am+1)≥2,即 m2+2am≥0. 令关于a的一次函数g(a)=m2+2am,则有 , 解得 m≤﹣2,或m≥2,或 m=0,故所求的m的范围是{m|m≤﹣2,或m≥2,或 m=0}. |
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源:不详 题型:单选题
A.y=x2 | B.y=x+1 | C.y=2x | D.y=log2|x| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com