精英家教网 > 高中数学 > 题目详情
3.如图,在三棱锥A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2$\sqrt{2}$,动点D在线段AB上.
(1)求证:平面COD⊥平面AOB;
(2)当OD⊥AB时,求三棱锥C-OBD的体积.

分析 (1)欲证平面COD⊥平面AOB,根据面面垂直的判定定理可知在平面COD内一直线与平面AOB垂直,根据勾股定理可知OC⊥OB,根据线面垂直的判定定理可知OC⊥平面AOB,而OC?平面COD,满足定理所需条件;
(2)OD⊥AB,OD=$\sqrt{3}$,此时,BD=1.根据三棱锥的体积公式求出所求即可.

解答 (1)证明:∵AO⊥底面BOC,∴AO⊥OC,AO⊥OB.
∵∠OAB=∠OAC=30°,AB=AC=4,∴OC=OB=2.
∵BC=2$\sqrt{2}$,由勾股定理得OC⊥OB,
∴OC⊥平面AOB.
∵OC?平面COD,∴平面COD⊥平面AOB.
(2)解:∵OD⊥AB,∴OD=$\sqrt{3}$,此时,BD=1.
∴VC-OBD=$\frac{1}{3}×\frac{1}{2}×\sqrt{3}×1×2$=$\frac{{\sqrt{3}}}{3}$.

点评 本题主要考查平面与平面垂直的判定,以及三棱锥C-OBD的体积的求解,同时考查了空间想象能力,计算能力和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,且PA⊥l,A为垂足,如果直线AF的斜率为-1,则|PF|等于(  )
A.2B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$=$\overrightarrow{CA}$•$\overrightarrow{AB}$,则该三角形是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下面的数阵,第20行第20个数是381.
1
2   3   4
5   6   7   8   9
10 11  12  13  14  15  16
17 18  19  20  21  22  23  24  25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知方程lnx-ax+1=0(a为实常数)有两个不等实根,则实数a的取值范围是(  )
A.(0,e)B.[1,e]C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,打算本年度投入800万元,以后每年投入将比上年平均减少20%,本年度旅游收入为400万元,由于该项建设对旅游的促进作用,预计今后的旅游业收入每年会比上年平均增加25%.
(Ⅰ)设第n年(本年度为第一年)的投入为an万元,旅游业收入为bn万元,写出an,bn的表达式;
(Ⅱ)至少经过几年旅游业的总收入超过总投入?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A是圆O外的一点,过A作直线与圆O交于B、C两点,若AB•AC=60,OA=8,则圆O的半径等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=4x-3•2x+3的值域为[1,7],则f(x)的定义域为(  )
A.(-1,1)∪[2,4]B.(0,1)∪[2,4]C.[2,4]D.(-∞,0]∪[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,如果lga-lgc=lgsinB=-lg$\sqrt{2}$,且B为锐角,则三角形的形状是等腰直角三角形.

查看答案和解析>>

同步练习册答案