精英家教网 > 高中数学 > 题目详情
(2013•兰州一模)选修4-4:《坐标系与参数方程》
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cosα
y=sinα
(α为参数)
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
分析:(I)先利用点的极坐标和直角坐标的互化公式,把极坐标系下的点(4,
π
2
)化为直角坐标,再在直角坐标系下判断点P与直线l的位置关系;
(II)根据曲线C的参数方程,设点Q的坐标为(
3
cosα,sinα),再利用点到直线的距离公式求出点Q到直线l的距离,最后利用三角函数的性质即可求得d的最小值.
解答:解:(I)把极坐标系下的点(4,
π
2
)化为直角坐标,得P(0,4).
因为点P的直角坐标(0,4)满足直线l的方程x-y+4=0,
所以点P在直线l上.…(5分)
(II)设点Q的坐标为(
3
cosα,sinα),
则点Q到直线l的距离为d=
|
3
cosα-sinα+4|
2
=
2
cos(α+
π
6
)+2
2

由此得,当cos(α+
π
6
)=-1时,d取得最小值,且最小值为
2
.…(10分)
点评:本题考查点的极坐标和直角坐标的互化,参数方程与普通方程的互化,考查点线距离公式的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•兰州一模)在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cosα
y=sinα

(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
)
,判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)选修4-5:不等式选讲
已知函数f(x)=|x-2|-|x-5|.
(1)证明:-3≤f(x)≤3;
(2)求不等式f(x)≥x2-8x+15的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)下列命题中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)设全集U={1,2,3,4,5},已知U的子集M、N满足集M={1,4},M∩N={1},N∩(?UM)={3,5},则N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)曲线y=x3+11在点P(1,12)处的切线与两坐标轴围成三角形的面积是(  )

查看答案和解析>>

同步练习册答案