精英家教网 > 高中数学 > 题目详情
7.多项式(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,x4项的系数=-15,x项的系数=274.

分析 本题可通过选括号(即5个括号中4个提供x,其余1个提供常数)进行求解即可解答第一问;类似求解第二问.

解答 解:含x4的项是由(x-1)(x-2)(x-3)(x-4)(x-5)的5个括号中4个括号出x仅1个括号出常数
∴展开式中含x4的项的系数是(-1)+(-2)+(-3)+(-4)+(-5)=-15.
含x的项是由(x-1)(x-2)(x-3)(x-4)(x-5)的5个括号中4个括号出常数仅1个括号出x,
∴展开式中含x的项的系数是:1×2×3×4+2×3×4×5+1×2×4×5+1×3×4×5+1×2×3×5=274.
故答案为:-15,274

点评 本题考查利用分步计数原理和分类加法原理求出特定项的系数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设等比数列{an}的前n项和为Sn,若S3+S6=S9,则公比q=(  )
A.1或-1B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=lg(ax2-x+a)的值域是R,则实数a的取值范围是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+2ax+a+1.
(1)当a=1时,求函数在区间[-2,3]上的值域;
(2)函数f(x)在[-5,5]上单调,求实数a的取值范围;
(3)求函数f(x)在[0,2]上的最小值g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}满足a2=3,S4=14,若数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn=$\frac{1007}{2016}$,则n=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三棱锥O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,若OA=OB=a,OC=b,D是该三棱锥外部(不含表面)的一点,则下列命题正确的是(  )
①存在无数个点D,使OD⊥面ABC;
②存在唯一点D,使四面体ABCD为正三棱锥;
③存在无数个点D,使OD=AD=BD=CD;
④存在唯一点D,使四面体ABCD有三个面为直角三角形.
A.①③B.①④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线C的离心率为2,它的一个焦点是(0,2),则双曲线C的标准方程为y2-$\frac{{x}^{2}}{3}$=1,渐近线的方程是y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$f(x)=\left\{\begin{array}{l}{2^{-x}},x≤0\\|{log_{\frac{1}{2}}}x|,x>0\end{array}\right.$,则f(f(-1))=1,方程f(x)=4的解是$-2,16,\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,已知$\overrightarrow{AB}•\overrightarrow{AC}=2\overrightarrow{AB}•\overrightarrow{BC}$若cosA=$\frac{4}{5}$,则tanB=-$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案