精英家教网 > 高中数学 > 题目详情
14.一投资公司有300万元资金,准备投资A、B两个项目,按照合同要求,对项目A的投资不少于对项目B的三分之二,而且每个项目的投资不少于25万元,若对项目A投资1万元可获利润0.4万元,对项目B投资1万元可获利润0.6万元,求该公司在这两个项目上共可获得的最大利润是多少?

分析 这是一个简单的投资分析,由题意,设对A投资x万元,对B投资y万元.利润为z万元,得到x,y的约束条件,以及目标函数,画出可行域,利用目标函数的几何意义求z最大值.

解答 解:设对A投资x万元,对B投资y万元.利润为z万元,则
$\left\{\begin{array}{l}{x≥\frac{2}{3}y}\\{x≥25}\\{y≥25}\\{x+y≤300}\end{array}\right.$,
设z=0.4x+0.6y,
作出可行域,如图所示,平移直线l0:y=-$\frac{2}{3}x$,当过点A(120,180)时,取得最大值.且最大值zmax=0.4×120+0.6×180=156万元.
答:该公司在这两个项目上共可获得的最大利润是156万元.

点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列命题(a,b表示直线,α表示平面)中正确的是(  )
A.$\left.{\frac{a||b}{b⊥α}}\right\}⇒a⊥α$B.$\left.{\frac{a||b}{b?α}}\right\}⇒a||α$C.$\left.\begin{array}{l}a⊥b\\ b∥α\end{array}\right\}⇒a⊥α$D.$\left.\begin{array}{l}a⊥α\\ a⊥b\end{array}\right\}⇒b?α$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的体积为(  )
A.72πB.144πC.288πD.576π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)求过A(1,2)和$B(-\frac{1}{2},1)$两点的直线的截距方程;
(2)求斜率为$\frac{4}{3}$且与坐标轴围成的三角形面积是4的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a,b满足不等式log2a<log3b,则下列结论:①0<b<a<1②0<a<b<1③1<a<b④1<b<a其中可能成立的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)是定义在(0,+∞)上的增函数,且满足f(a•b)=f(a)+f(b),f(3)=1则不等式:f(x)-f(x-2)>3的解集为(2,$\frac{27}{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,7},则集合A∩(∁UB)=(  )
A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an},an=|n-1|+|n-2|+…|n-20|,n∈N+,且1≤n≤20,则a5=(  )
A.190B.160C.130D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆H:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),原点O到直线MN的距离为$\frac{\sqrt{3}}{2}$,其中点M(0,-1),点N(a,0).
(1)求该椭圆H的离心率e;
(2)经过椭圆右焦点F2的直线l和该椭圆交于A,B两点,点C在椭圆上,O为原点,
若$\overrightarrow{OC}$=$\frac{1}{2}\overrightarrow{OA}$+$\frac{\sqrt{3}}{2}$$\overrightarrow{OB}$,求直线l的方程.

查看答案和解析>>

同步练习册答案