精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为D,若任取x1∈D,存在唯一的x2∈D,满足
f(x1)+f(x2)
2
=C,则称C为函数y=f(x)在D上的均值,给出下列五个函数:①y=x;②y=x2;③y=4sinx;④y=lgx;⑤y=2x.则所有满足在其定义域上的均值为2的函数的序号为
 
考点:函数的值
专题:函数的性质及应用
分析:根据定义分别验证对于任意的x1∈D,存在唯一的x2∈D,使 f(x1)+f(x2)=4成立的函数即可.
解答: 解:首先分析题目求对于任意的x1∈D,存在唯一的x2∈D,使 f(x1)+f(x2)=4成立的函数.
①y=x,f(x1)+f(x2)=4得 x1+x2=4,解得x2=4-x1,满足唯一性,故成立.
②y=x2,由 f(x1)+f(x2)=4得 x12+x22=4,此时x2=±
4-x12
,x2有两个值,不满足唯一性,故不满足条件.
③y=4sinx,明显不成立,因为y=4sinx是R上的周期函数,存在无穷个的x2∈D,使
f(x1)+f(x2)
2
=2
成立.故不满足条件
④y=lgx,定义域为x>0,值域为R且单调,显然必存在唯一的x2∈D,使
f(x1)+f(x2)
2
=2
成立.故成立.
⑤y=2x定义域为R,值域为y>0.对于x1=3,f(x1)=8.要使
f(x1)+f(x2)
2
=2
成立,则f(x2)=-4,不成立.
故答案为:①④.
点评:本题主要考查新定义的应用,考查学生的推理和判断能力.综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=sin(x+
π
6
)cos(x-
π
3
)的最小周期是(  )
A、2π
B、π
C、
π
4
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
327
+(
3
-1)
2
-(
1
2
)
-1
+
4
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a,平面α,β,且a?α,则“a⊥β”是“α⊥β”的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
y=x4+x
 

f(x)=5x+3
 

f(x)=x-2+x4
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
32x
3+32x
,求f(
1
101
)+f(
2
101
)+…+f(
100
101
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,则
2cos(
π
2
+α)-cos(π-α)
cosα+3sinα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

tan(-570°)+sin240°=(  )
A、-
5
3
6
B、
3
6
C、
3
3
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点P为Rt△ABC的斜边AB的延长线上一点,且PC与Rt△ABC的外接圆相切,过点C作AB的垂线,垂足为D,若PA=18,PC=6,求线段CD的长.

查看答案和解析>>

同步练习册答案