精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是
π2

(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.
分析:(1)先用二倍角公式和两角和公式对函数解析式进行化简,进而根据函数的最小正周期求得ω.
(2)根据正弦函数的性质可知4x+
π
4
=
π
2
+2kπ
时,函数取最大值2+
2
,进而求得x的集合.
解答:解:(Ⅰ)解:f(x)=2•
1+cos2ωx
2
+sin2ωx+1

=sin2ωx+cos2ωx+2
=
2
(sin2ωxcos
π
4
+cos2ωxsin
π
4
)+2

=
2
sin(2ωx+
π
4
)+2

由题设,函数f(x)的最小正周期是
π
2
,可得
=
π
2
,所以ω=2.

(Ⅱ)由(Ⅰ)知,f(x)=
2
sin(4x+
π
4
)+2

4x+
π
4
=
π
2
+2kπ
,即x=
π
16
+
2
(k∈Z)
时,sin(4x+
π
4
)
取得最大值1,
所以函数f(x)的最大值是2+
2
,此时x的集合为{x|x=
π
16
+
2
,k∈Z}
点评:本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数y=Asin(ωx+φ)的性质等基础知识,考查基本运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案