精英家教网 > 高中数学 > 题目详情
如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.
(1)证明过程见解析;(2).

试题分析:(1)作,作,易得四边形是平行四边形,所以.又,所以平面;
(2)以轴的正方向,以轴的正方向,在平面中过点作面的垂线为轴,建立空间直角坐标系求题,利用向量,求出平面和平面的法向量,则两平面的法向量的夹角即为所求角或为所求角的补角.
(1)作,作,因都是正三棱锥, 且分别为的中心,

且  .    
所以四边形是平行四边形,所以.
,所以平面
(2)如图,建立空间直角坐标系,
     

.…7分
为平面的法向量,


            
为平面的法向量,

            
                                          
设平面与平面所成锐二面角为,                    
  
所以,面与面所成锐二面角的余弦值为.          
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC
及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求证:AC⊥DE;

(2)求二面角A-DE-C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面,底面是直角梯形,,且的中点.

(1)设与平面所成的角为,二面角的大小为,求证:
(2)在线段上是否存在一点(与两点不重合),使得∥平面? 若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(1)求证:
(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且BM=BD,AN=AE.求证:MN∥平面CDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为矩形,侧棱底面的中点.
 
(1)求直线所成角的余弦值;
(2)在侧面内找一点,使,并求出点的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,点E为的中点,则平面与平面ABCD所成的锐二面角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使=0成立的点M的个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量a=(4,-2,-4),b=(6,-3,2),则(a+b)·(a-b)的值为______.

查看答案和解析>>

同步练习册答案