精英家教网 > 高中数学 > 题目详情

【题目】如图半圆柱的底面半径和高都是1,面是它的轴截面(过上下底面圆心连线的平面),分别是上下底面半圆周上一点.

(1)证明:三棱锥体积,并指出满足什么条件时有

(2)求二面角平面角的取值范围,并说明理由.

【答案】(1)见解析(2)

【解析】试题分析:

(1)利用题意结合均值不等式讨论即可得出结论:需要.

(2)利用题意建立空间直角坐标系,然后求得的表达式即可确定二面角平面角的取值范围.

试题解析:

(1)

证明: ,其中到平面的距离,(由条件及圆柱性质)即平面的距离且为定值1

由半圆性质所以

所以由均值不等式

要有因为等价于要有

所以需要即可!

注:1、不用均值不等式证明老师斟酌给分,若数形结合证明,只要说清楚了就给满分2、(等价说法: 都可以!)

(2)

如图以为原点、轴、轴建坐标系作垂直于平面

平面法向量可取

设平面的法向量

可令

所以二面角平面角范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列{an}的公比为q(q≠0),其前项和为Sn , 若S3 , S9 , S6成等差数列,则q3=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面 分别为棱的中点.

(1)求证: 平面

2)(文科)求三棱锥的体积;

(理科)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=x2+2mx+
(1)用定义法证明f(x)在R上是增函数;
(2)求出所有满足不等式f(2a﹣a2)+f(3)>0的实数a构成的集合;
(3)对任意的实数x1∈[﹣1,1],都存在一个实数x2∈[﹣1,1],使得f(x1)=g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2 ,AC=BC,F 是AB上一点,且AF= AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=

(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A﹣CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的倍后得到曲线.以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.

(1)试写出曲线的极坐标方程与曲线的参数方程;

(2)在曲线上求一点,使点到直线的距离最小,并求此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形四点坐标为A(0,-2),C(4,2),B(4,-2),D(0,2).

(1)求对角线所在直线的方程;

(2)求矩形外接圆的方程;

(3)若动点为外接圆上一点,点为定点,问线段PN中点的轨迹是什么,并求出该轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的正方体中,M是棱CC1的中点.

(1)求B到面的距离;

(2)求BC与面所成角的正切值;

(3)求面与面ABCD所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案