精英家教网 > 高中数学 > 题目详情
如图,已知正三棱柱中,上的动点.

(1)求五面体的体积;
(2)当在何处时,平面,请说明理由;
(3)当平面时,求证:平面平面.
(1)4;(2)的中点;(3)证明过程详见解析.

试题分析:本题主要以正三棱柱为几何背景,考查椎体体积、线面平行、面面垂直的判定,运用传统几何法求解证明,突出考查空间想象能力和计算能力.第一问,由图形判断五面体就是四棱锥,所以主要任务就是求高和底面面积;第二问,利用直线与平面平行的性质定理,证明出,所以中点;第三问,结合第二问的结论,由线面垂直的判定定理,得出⊥平面,再由面面垂直的判定定理得出结果.
试题解析:(Ⅰ)如图可知五面体是四棱锥

∵侧面垂直于底面
∴正三角形的高就是这个四棱锥的高,

于是.      4分
(Ⅱ)当点中点时,∥平面

连结连结,∵四边形是矩形,
中点,
∥平面,平面平面
,∴的中点.                      8分
(Ⅲ)由(Ⅱ)可知当∥平面时,的中点.
为正三角形,的中点,∴
平面,∴
,∴⊥平面
平面,∴平面⊥平面.                      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,,点在边上,点在边上,且,垂足为,若将沿折起,使点位于位置,连接得四棱锥

(Ⅰ)求证:
(Ⅱ)若,直线与平面所成角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(I) 证明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是正方形,

(Ⅰ)求证:平面平面
(Ⅱ)若所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在三棱柱ABC-A1B1C1中,AA1底面A1B1C1, 底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1,P是BC1上一动点,则A1P+PC的最小值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用一个边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,半径为1的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是边长为为正方形的对角线,将绕直线旋转一周后形成的几何体的体积等于             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知长方形ABCD中,AB=2,A1,B1分别是AD,BC边上的点,且AA1=BB1="1," E,F分别为B1D与AB的中点. 把长方形ABCD沿直线折成直角二面角,且.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案