精英家教网 > 高中数学 > 题目详情
(2013•盐城三模)在平面直角坐标系xOy中,已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,直线l经过点(1,0).若对任意的实数m,定直线l被圆C截得的弦长为定值,则直线l的方程为
2x+y-2=0
2x+y-2=0
分析:根据圆的方程求出圆心和半径,由题意可得圆心C到直线l的距离为定值.当直线l的斜率不存在时,经过检验不
符合条件.当直线l的斜率存在时,直线l的方程为 y-0=k(x-1),圆心C到直线l的距离为定值求得k的值,从而求得
直线l的方程.
解答:解:圆C:x2+y2-(6-2m)x-4my+5m2-6m=0 即[x-(3-m)]2+(y-2m)2=9,表示以C(3-m,2m)为圆心,半径等于3的圆.
∵直线l经过点(1,0),对任意的实数m,定直线l被圆C截得的弦长为定值,则圆心C到直线l的距离为定值.
当直线l的斜率不存在时,直线l的方程为 x=1,圆心C到直线l的距离为|m-3-1|=|m-4|,不是定值.
当直线l的斜率存在时,设直线l的斜率为k,则直线l的方程为 y-0=k(x-1),即 kx-y-k=0.
此时,圆心C到直线l的距离 d=
|k(3-m)-2m-k|
k2+1
=
|2k-m(2+k)|
k2+1
 为定值,与m无关,
故 k=-2,故直线l的方程为 y-0=-2(x-1),即 2x+y-2=0,
故答案为 2x+y-2=0.
点评:本题主要考查圆的标准方程,直线和圆的位置关系,点到直线的距离公式,体现了分类讨论的数学思想,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•盐城三模)已知函数f (x)=2sin(ωx+?)(ω>0)的部分图象如图所示,则ω=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)记函数f(x)=
3-x
的定义域为A,函数g(x)=lg(x-1)的定义域为B,则A∩B=
(1,3]
(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)选修4-2:矩阵与变换
已知矩阵M=
.
1a
b1
.
对应的变换将点A(1,1)变为A′(0,2),将曲线C:xy=1变为曲线C′.
(1)求实数a,b的值;
(2)求曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)选修4-4:坐标系与参数方程已知圆C的极坐标方程为ρ=4cos(θ-
π
6
),点M的极坐标为(6,
π
6
),直线l过点M,且与圆C相切,求l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)选修4-5:不等式选讲解不等式x|x-4|-3<0.

查看答案和解析>>

同步练习册答案