已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线与x轴相交于定点;
(3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值范围.
科目:高中数学 来源:2011年湖南省校高二下学期1月份联考数学理卷 题型:解答题
((本小题满分13分)
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆
于另一点,证明:直线与x轴相交于定点;
(3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值
范围。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南长郡中学高三年级分班考试理科数学卷 题型:解答题
(本小题满分10分)
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点Q;
(3)在(2)的条件下,过点Q的直线与椭圆C交于M、N两点,求的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011-2012年湖南省高二上(12月)月考试题数学 题型:解答题
(本小题满分13分)
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆
于另一点,证明:直线与x轴相交于定点;
(3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值
范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点Q;
(3)在(2)的条件下,过点Q的直线与椭圆C交于M、N两点,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com