精英家教网 > 高中数学 > 题目详情
已知{an}是公比为q≠1的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,求使Sn>0成立的最大的n的值.
分析:(Ⅰ)由a1,a3,a2成等差数列知2a3=a1+a2,即2a1q2=a1+a1q,解方程可求q
(Ⅱ)由(I)知可知q=-
1
2
,代入等差数列的求和公式可求Sn,令Sn>0可求n的范围,结合n∈N*
解答:解:(Ⅰ)由a1,a3,a2成等差数列知2a3=a1+a2
即2a1q2=a1+a1q,
所以2q2-q-1=0
所以q=1或q=-
1
2
而q≠1,
所以q=-
1
2

(Ⅱ)由(I)知可知q=-
1
2

Sn=2n+
n(n-1)
2
•(-
1
2
)=
-n2+n+8n
4
=
-n2+9n
4

所以-n2+9n>0,解得0<n<9,
所以满足条件的最大值为n=8.
点评:本题主要考查了利用基本量表示数列的基本量,等差数列与等比数列的综合应用,等差数列的求和公式的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是公比为常数q的等比数列,若a4,a5+a7,a6成等差数列,则q等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列,则q=(  )
A、1或-
1
2
B、1
C、-
1
2
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公比为2的等比数列,若a3-a1=6,则
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n
=
1
3
(1-
1
4n
)
1
3
(1-
1
4n
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区一模)已知{an}是公比为q的等比数列,且a1+2a2=3a3
(Ⅰ)求q的值;
(Ⅱ)设{bn}是首项为2,公差为q的等差数列,其前n项和为Tn.当n≥2时,试比较bn与Tn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公比为2的等比数列,若a3-a1=6,则a1+a2+…+an=
 

查看答案和解析>>

同步练习册答案