【题目】已知函数g(x)=|x|+2|x+2﹣a|(a∈R).
(1)当a=3时,解不等式g(x)≤4;
(2)令f(x)=g(x﹣2),若f(x)≥1在R上恒成立,求实数a的取值范围.
【答案】
(1)解:依题意得g(x)=|x|+2|x﹣1|≤4
当x≥1时,原不等式化为:x+2(x﹣1)≤4,解得1≤x≤2;
当0≤x<1时,原不等式化为:x+2(1﹣x)≤4,解得0≤x<1
当x<0时,原不等式化为:﹣x+2(1﹣x)≤4,
解得﹣ ≤x<0.
综上可得,不等式的解集为{x|﹣ ≤x≤2}
(2)解:f(x)=g(x﹣2)=|x﹣2|+2|x﹣a|(a∈R)
a>2时,f(x)= ;
a=2时,f(x)= ;
a<2时,f(x)= ;
所以f(x)的最小值为f(2)或f(a);
则 ,即 所以|a﹣2|≥1,
解得a≤1或a≥3.
【解析】(1)由题意可得g(x)=|x|+2|x﹣1|≤4,讨论当x≥1时,当0≤x<1时,当x<0时,去掉绝对值,解不等式即可得到所求解集;(2)求得f(x)=g(x﹣2)=|x﹣2|+2|x﹣a|(a∈R),讨论a=2,a>2,a<2,运用分段函数求出f(x),所以f(x)的最小值为f(2)或f(a),由恒成立思想可得a的不等式,解不等式即可得到所求范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a,b∈R,且a≠0,e为自然对数的底数).
(I)若曲线f(x)在点(e,f(e))处的切线斜率为0,且f(x)有极小值,求实数a的取值范围.
(II)(i)当 a=b=l 时,证明:xf(x)+2<0;
(ii)当 a=1,b=﹣1 时,若不等式:xf(x)>e+m(x﹣1)在区间(1,+∞)内恒成立,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:若定义域为R的函数f(x)不是偶函数,则x∈R,f(﹣x)≠f(x).命题q:f(x)=x|x|在(﹣∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( )
A.p为假
B.¬q为真
C.p∨q为真
D.p∧q为假
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是菱形,∠CAF=60°.
(1)求证:BC⊥平面ACEF;
(2)求平面ABF与平面ADF所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,x∈(0,+∞),其导函数为f′(x),现有如下命题:
①对x1∈(0,+∞),x2∈(0,+∞),使得x2f(x1)>x1f(x2);
②对x1∈(0,+∞),对x2∈(0,+∞)且x1≠x2 , 使得f(x1)﹣f(x2)<x2﹣x1;
③当a>3时,对x∈(0,+∞),不等式f(a+x)<f(a)ex恒成立;
④当a>3时,对x∈(3,+∞),且x≠a时,不等式f(x)>f(a)+f′(a)(x﹣a)恒成立;其中真命题的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD﹣A1B1C1D1中,E,F分别是AB,CD1的中点,AA1=AD=1,AB=2.
(1)求证:EF∥平面BCC1B1;
(2)求证:平面CD1E⊥平面D1DE;
(3)在线段CD1上是否存在一点Q,使得二面角Q﹣DE﹣D1为45°,若存在,求 的值,不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为 ,以直角坐标系原点为极点, 轴正半轴为极轴建立极坐标系。
(1)求曲线C的极坐标方程;
(2)若直线 的极坐标方程为 ,求直线 被曲线C截得的弦长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com