精英家教网 > 高中数学 > 题目详情

【题目】在公园游园活动中有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同;每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)在一次游戏中:①求摸出3个白球的概率;②求获奖的概率;
(2)在两次游戏中,记获奖次数为X:①求X的分布列;②求X的数学期望.

【答案】
(1)解:记“在一次游戏中摸出k个白球”为事件Ak(k=0,1,2,3).


(2)解:

①X的分布列为

X

0

1

2

P

②X的数学期望


【解析】(1)①利用古典概型概率计算公式即可;②根据摸出的白球不少于2个,则获奖,利用互斥事件的概率公式求解即可;(2)确定X的取值,求出概率,可得分布列与数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直角梯形所在的平面垂直于平面.

(1)若的中点,求证:平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.已知bcosC+ccosB=2acosA.
(1)求角A的大小;
(2)若 = ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市小区有一个矩形休闲广场,AB=20米,广场的一角是半径为16米的扇形BCE绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN(宽度不计),点M在线段AD上,并且与曲线CE相切;另一排为单人弧形椅沿曲线CN(宽度不计)摆放.已知双人靠背直排椅的造价每米为2a元,单人弧形椅的造价每米为a元,记锐角∠NBE=θ,总造价为W元.
(1)试将W表示为θ的函数W(θ),并写出cosθ的取值范围;
(2)如何选取点M的位置,能使总造价W最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的方程为y2=2px(p>0),点R(1,2)在抛物线C上.
(1)求抛物线C的方程;
(2)过点Q(1,1)作直线交抛物线C于不同于R的两点A,B.若直线AR,BR分别交直线l:y=2x+2于M,N两点,求线段MN最小时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个盒子中装有相同大小的红球和白球若干,从甲盒中取出一个红球的概率为P,从乙盒中取出一个球为红球的概率为,而甲盒中球的总数是乙盒中的总数的2倍。若将两盒中的球混合后,取出一个球为红球的概率为,则P的值为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)如果存在x1x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M

(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面的中点.

(1)求证:

(2)在线段上是否存在点,使二面角的大小为,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案