精英家教网 > 高中数学 > 题目详情

设p:函数f(x)=mx3+3x2-x+1在R上是减函数,q:m<-3,则p是q的


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充分必要条件
  4. D.
    既不充分也不必要条件
B
分析:函数f(x)=mx3+3x2-x+1在R上是减函数,等价于f′(x)=3mx2+6x-1<0在R上恒成立,从而有m<0,△=36+12m<0,由此可得结论.
解答:由题意,∵函数f(x)=mx3+3x2-x+1在R上是减函数
∴f′(x)=3mx2+6x-1≤0在R上恒成立
∴m<0,△=36+12m≤0
∴m≤-3
所以p是q的必要不充分条件
故选:B.
点评:本题以三次函数为载体,考查函数的单调性,考查四种条件,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设p:函数f(x)=x2-2cx+c2+1在区间(0,1)上的最小值为1,q:不等式x+|x-2c|>1的解集为R,如果命题P或q中一个为真命题另一个为假命题,试求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为函数f(x)=
1
2
sin(πx+
π
4
)
的图象上的一个最高点,Q为函数g(x)=
1
2
cosπx
图象上的一个最低点,则|PQ|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州二模)设P为函数f(x)=sin(πx)的图象上的一个最高点,Q为函数g(x)=cos(πx)的图象上的一个最低点,则|PQ|最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杨浦区一模)已知函数f(x)=
.
x
1
x
-21
.
(x>0)的值域为集合A,
(1)若全集U=R,求CUA;
(2)对任意x∈(0,
1
2
],不等式f(x)+a≥0恒成立,求实数a的范围;
(3)设P是函数f(x)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A、B,求
PA
PB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,设p:函数f(x)=x2+(a-1)x是区间(1,+∞)上的增函数,q:方程x2-ay2=1表示双曲线.
(1)若p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案