精英家教网 > 高中数学 > 题目详情

【题目】下列方程中,没有实数根的是(  )
A.2x+3=0
B.﹣1=0
C.
D.+x+1=0

【答案】D
【解析】解:A、2x+3=0,解得:x=﹣
∴A中方程有一个实数根;
B、在x2﹣1=0中,
△=02﹣4×1×(﹣1)=4>0,
∴B中方程有两个不相等的实数根;
C、 =1,即x+1=2,
解得:x=1,
经检验x=1是分式方程 =1的解,
∴C中方程有一个实数根;
D、在x2+x+1=0中,
△=12﹣4×1×1=﹣3<0,
∴D中方程没有实数根.
故选D.
【考点精析】关于本题考查的解一元一次方程的步骤和求根公式,需要了解先去分母再括号,移项变号要记牢.同类各项去合并,系数化“1”还没好.求得未知须检验,回代值等才算了;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 的中点, 为线段上的动点,过点 的平面截该正方体所得的截面为,则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;

③当时, 的交点满足

④当时, 为五边形;

⑤当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆及点

(1)在圆上,求线段的长及直线的斜率;

(2)若为圆上任一点,求的最大值和最小值;

(3)若实数满足,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面是等腰直角三角形,,四边形是直角梯形,分别为的中点.

(I)求证:平面

(II)求直线和平面所成角的正弦值

(III)能否在上找一点使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)判定AE与PD是否垂直,并说明理由.
(2)设AB=2,若H为PD上的动点,若△AHE面积的最小值为 , 求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形为直角梯形, ,若是以为底边的等腰直角三角形,且.

(1)证明: 平面

(2)求直线与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

(1)求及基地的预期收益;

(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形的两条对角线相交于点 边所在直线的方程为,点边所在的直线上.

(Ⅰ)求边所在直线的方程;

(Ⅱ)求矩形外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照国家环保部发布的新修订的《环境空气质量标准》,规定:PM2.5的年平均浓度不得超过35微克/立方米,国家环保部门在2016年10月1日到2017年1月30日这120天对全国的PM2.5平均浓度的监测数据统计如下:

组别

PM2.5浓度(微克/立方米)

频数(天)

第一组

32

第二组

64

第三组

16

第四组

115以上

8

(1)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?

(2)在(1)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.

查看答案和解析>>

同步练习册答案