精英家教网 > 高中数学 > 题目详情

已知展开式数学公式+…对x∈R且x≠0恒成立,方程数学公式=0有无究多个根:±π,±2π,…±nπ,…,则1-数学公式…,比较两边x2的系数可以推得1+数学公式.设代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn,类比上述方法可得a1=________.(用x1,x2,…,xn表示)


分析:由已知中式+…对x∈R且x≠0恒成立,方程=0有无究多个根:±π,±2π,…±nπ,…,则,1-…,比较两边x2的系数可以推得1+.类比推理可由代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn,转化 为1-a1x2+a2x4-…+(-1)nanx2n=,比较两边x2的系数即可得到答案.
解答:由1-中,
比较两边x2的系数可以推得:1+
类比揄代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn
即1-a1x2+a2x4-…+(-1)nanx2n=中,
比较两边x2的系数可以推得:a1=(
故答案为:(
点评:本题考查的知识点是类比推理,其中由已知根据方程根的形式,将一个累加式变成一个累乘式,用到一次类比推理;现时观察两边x2的系数得到结论,又用到一次类比,故难较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设代数方程a0-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根±x1,±x2,…,±xn,则a0-a1x2+a2x4-…+(-1)nanx2n=a0(1-
x2
x
2
1
)(1-
x2
x
2
2
)•…•(1-
x2
x
2
n
)
,比较两边x2的系数得a1=
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
(用a0•x1•x2•…•xn表示);若已知展开式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…
对x∈R,x≠0成立,则由于
sinx
x
=0
有无穷多个根:±π,±2π,…,+±nπ,…,于是1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)•…•(1-
x2
n2π2
)•…
,利用上述结论可得1+
1
22
+
1
32
+…+
1
n2
+…
=
π2
6
π2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知展开式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…对x∈R且x≠0恒成立,方程
sinx
x
=0有无究多个根:±π,±2π,…±nπ,…,则1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)…(1-
x2
n2π2
)
…,比较两边x2的系数可以推得1+
1
22
+
1
32
+…+
1
n2
+…=
π2
6
.设代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn,类比上述方法可得a1=
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
.(用x1,x2,…,xn表示)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

理科附加题:
已知展开式的各项依次记为a1(x),a2(x),a3(x),…an(x),an+1(x).
设F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值;
(Ⅱ)求证:对任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁中学高三(上)第二次调研数学试卷(解析版) 题型:解答题

理科附加题:
已知展开式的各项依次记为a1(x),a2(x),a3(x),…an(x),an+1(x).
设F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值;
(Ⅱ)求证:对任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省淮安市清江附中高三(上)第二次调研数学试卷(解析版) 题型:解答题

理科附加题:
已知展开式的各项依次记为a1(x),a2(x),a3(x),…an(x),an+1(x).
设F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值;
(Ⅱ)求证:对任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

同步练习册答案