精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面为正方形,且平面分别是的中点.
(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.
(Ⅰ)证明见解析(Ⅱ)
(Ⅰ)证明:取的中点为,连接
易证:
于是,EF∥MD,而MDÌ平面PCD
所以EF∥平面PCD
(Ⅱ)以点为原点,建系
易求得(1,1,0)、()、(0,1,0)、(,0,0),
从而分别求出平面和平面的法向量
从而算出二面角大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图6,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于的点,,圆的直径为9.
(1)求证:平面平面
(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥(如图)底面是边长为2的正方形.侧棱底面分别为的中点,
(Ⅰ)求证:平面⊥平面
(Ⅱ)直线与平面所成角的正弦值为,求PA的长;
(Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,已知
(1)证明:平面
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心。
(Ⅰ)证明:AF⊥平面FD1B1
(Ⅱ)求异面直线EB与O1F所成角的余弦值;               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面ABCDABCD为正方形,是直角三角形,且E、F、G分别是线段PAPDCD的中点.
(1)求证:∥面EFC
(2)求异面直线EGBD所成的角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为互不重合的平面,为互不重合的直线,给出下列四个命题:]
①若
②若,则
③若  
④若   
其中所有正确命题的序号是(    )
A.①②B.①③C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在图中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,圆柱底面半径为1,高为2,若从M点绕圆柱体的侧面到达N,最短路程为             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(  )
                      

查看答案和解析>>

同步练习册答案