精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n次和为sn,且S2=10,S5=55,则过点P(n,an)和Q(n+2,an+2)(n∈-N*)的直线方向向量的坐标可以是
(1,4)
(1,4)
分析:根据等差数列{an},可求数列的通项公式,根据斜率公式可知求出直线PQ的斜率,从而求出一个直线方向向量的坐标.
解答:解:∵等差数列{an}的前n项和为Sn,且S2=10,S5=55,
∴a1+a2=10,a3=11,
∴a1=3,d=4,
∴an=4n-1
an+2=4n+7,
∴P(n,4n-1),Q(n+2,4n+7)
∴直线PQ的斜率是
4n+7-4n+1
n+2-n
=4,
∴过点P(n,an)和Q(n+2,an+2)(n∈-N*)的直线方向向量的坐标可以是(1,4)
故答案为:(1,4)
点评:本题主要考查了一条直线的方向向量,注意当方向向量横标是1时,纵标就是直线的斜率,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案