精英家教网 > 高中数学 > 题目详情

已知函数处存在极值.
(1)求实数的值;
(2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围;
(3)当时,讨论关于的方程的实根个数.

(1) .(2)的取值范围是.(3)①当时,方程有两个实根;②当时,方程有三个实根;③当时,方程有四个实根.

解析试题分析:(1)求导得,将代入解方程组即得.(2) 由(1)得根据条件知A,B的横坐标互为相反数,不妨设.接下来根据大于等于1和小于1分别求解.(3)由方程
,显然0一定是方程的根,所以仅就时进行研究,这时方程等价于,构造函数,利用导数作出的图象即可得方程的要的个数.
试题解析:(1)当时,.      1分
因为函数处存在极值,所以
解得.      4分
(2) 由(I)得
根据条件知A,B的横坐标互为相反数,不妨设.
,则
是直角得,,即
.此时无解;      6分
,则. 由于AB的中点在轴上,且是直角,所以B点不可能在轴上,即. 同理有,即.
因为函数上的值域是
所以实数的取值范围是.      8分
(3)由方程,知,可知0一定是方程的根, 10分
所以仅就时进行研究:方程等价于
构造函数
对于部分,函数的图像是开口向下的抛物线的一部分,
时取得最大值,其值域是
对于部分,函数,由
知函数上单调递增.
所以,①当时,方程有两个实根;
②当时,方程有三个实根;
③当时,方程有四个实根.       14分
考点:1、导数的应用;2、方程的根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3+ax2+bx(a,b∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)若f(1)=,且函数f(x)在上不存在极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(1)求的单调区间;
(2)若函数在区间上为增函数,求的取值范围;
(3)设函数,当时,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=xax2bln x,曲线yf(x)在点P(1,0)处的切线斜率为2.
(1)求ab的值;
(2)证明:f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若方程有且只有一个解,求实数m的取值范围;
(3)当时,若有,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2tx-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[nn+2](n>0)上的最小值;
(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-ax(a>0).
(I)当a=2时,求f(x)的单调区间与极值;
(Ⅱ)若对于任意的x∈(0,+),都有f(x)<0,求a的取值范围.

查看答案和解析>>

同步练习册答案