精英家教网 > 高中数学 > 题目详情
1.已知任意一个正整数的三次幂均可表示成一些连续奇数的和,如图所示,33可以表示为7+9+11,我们把7,9,11叫做33的“质数因子”,若n3的一个“质数因子”为2013,则n为(  )
A.43B.44C.45D.46

分析 由题意和等差数列的前n项和公式,求出前n个正整数的三次幂的“数因子”的个数是$\frac{n(n+1)}{2}$,再判断出2015是第1008个奇数,再由条件和特值法判断出2015应是453的一个“数因子”.

解答 解:由题意知,n3可表示为n个连续奇数的和,且所有正整数的“数因子”都是按照从小到大的顺序排列的,
所以前n个正整数的三次幂的“数因子”共有1+2+3+…+n=$\frac{n(n+1)}{2}$个,
因为2015=2×1008-1,故2015是第1008个奇数,
而$\frac{44×45}{2}$=990<1008,$\frac{45×46}{2}$=1035>1008,
所以443的最大“数因子”是第990个奇数,453的最大“数因子”是第1035个奇数,
故第1008个奇数:2015应是453的一个“数因子”,
故选:C.

点评 本题考查了新定义的应用,归纳推理,等差数列的前n项和公式,难点在于发现其中的规律,考查观察、分析、归纳能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an},满足a1=4,an+1=3an-4,(n∈N*),求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,矩形ABCD的边长为6和4.□EFGH的顶点在矩形的边上,并且AH=CF=2,AE=CG=3.点P在FH上,并且S四边形AEPH=5,则S四边形PFCG=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.
(3)若PO=1,AB=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在等腰△ABC中,∠BAC=120°,AB=$\sqrt{3}$,点M在线段BC上.
(1)若AM=1,求BM的长;
(2)若点N在线段MC上,且∠MAN=30°,问:当∠BAM取何值时,△AMN的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.x、y为正数,若2x+y=1,则$\frac{1}{x}+\frac{1}{y}$的最小值为$3+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1$,且$\frac{π}{4}≤x≤\frac{π}{2}$.
(1)求f(x)的最大值及最小值;
(2)若条件$p:f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1,\frac{π}{4}≤x≤\frac{π}{2}$;条件q:|f(x)-m|<2,且p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(文)若正数x,y满足x+y+xy=8,则xy的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l过点$(\sqrt{3},-2)$和(0,1),则直线l的倾斜角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

同步练习册答案