精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别是角A、B、C的对边,且向量
m
=(sinA,cosA),
n
=(cosC,sinC),且
m
n
=sin2B

(Ⅰ)求角B的大小;
(Ⅱ)若△ABC的面积是
3
3
4
,且a+c=5,求b.
分析:(1)由数量积的坐标公式,结合两角和的正弦公式和二倍角正弦公式列式并化简,得sin(A+C)=2sinBcosB,再由sin(A+C)=sinB在等式两边约去sinB可得cosB=
1
2
,结合三角形内角取值范围,可得角B的大小;
(2)根据正弦定理的面积公式,结合题中的数据算出ac=3,再配方得到a2+c2=19,最后利用余弦定理算出b2的值,即可得边b的值.
解答:解:(1)∵
m
n
=sinAcosC+cosAsinC=sin2B,且sin2B=2sinBcosB
∴sin(A+C)=2sinBcosB,即sin(π-B)=2sinBcosB,
∵sin(π-B)=sinB,且sinB是正数,∴cosB=
1
2

∵B∈(0,π),∴B=
π
3

(2)由正弦定理,得S△ABC=
1
2
acsinB=
3
3
4

∵B=
π
3
,得sinB=
3
2
,∴ac=3
又∵a+c=5,∴a2+c2=(a+c)2-2ac=25-6=19
根据余弦定理,得:
b2=a2+c2-2accosB=19-2×3×
1
2
=16
∴b=4(舍负)
点评:本题以平面向量的数量运算为载体,考查了用正余弦定理解三角形、两角和的正弦公式和二倍角的正弦公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案