精英家教网 > 高中数学 > 题目详情

【题目】函数上任意一点处的切线,在其图像上总存在异与点A的点,使得在B点处的切线满足,则称函数具有自平行性”.下列有关函数的命题:

①函数具有自平行性;②函数具有自平行性

③函数具有自平行性的充要条件为实数

④奇函数不一定具有自平行性;⑤偶函数具有自平行性”.

其中所有叙述正确的命题的序号是(

A.①③④B.①④⑤C.②③④D.①②⑤

【答案】A

【解析】

根据已知中函数具有“自平行性”的定义,逐一分析5个函数是否具有“自平行性”,最后综合讨论结果,可得答案.

解:函数具有“自平行性”,即对定义域内的任意自变量,总存在,使得

对于①,,具有周期性,必满足条件,故①正确;

对于②,,对任意,不存在,使得成立,故②错误;

对于③,当时,,而时,,解得(舍去)或,则,故③正确;

对于④,不符合定义,故④正确;

对于⑤,同④,其导函数为偶函数,故⑤不正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点为F1F2过点F1的直线l与双曲线C的左支交于AB两点,BF1F2的面积是AF1F2面积的三倍,∠F1AF290°,则双曲线C的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为元时,生产件产品的销售收入是(元),为每天生产件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件元进货后又以每件元销售, ,其中为最高限价 为销售乐观系数,据市场调查, 是由当 的比例中项时来确定.

(1)每天生产量为多少时,平均利润取得最大值?并求的最大值;

(2)求乐观系数的值;

(3)若,当厂家平均利润最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,点在平面内的射影在线段上.

(1)求证:

(2)若是正三角形,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免书写危机,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160184之间,将测试结果按如下方式分成六组:第1,第2,第6,如图是按上述分组方法得到的频率分布直方图.

1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

2)试估计该市市民正确书写汉字的个数的众数与中位数;

3)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市同组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设,(其中的导数),求的最小值;

2)设,若有零点,求的取值范围.

查看答案和解析>>

同步练习册答案