精英家教网 > 高中数学 > 题目详情
11.直线x-y+1=0的倾斜角为(  )
A.90°B.45°C.135°D.60°

分析 根据题意,设该直线的倾斜角为θ,由直线方程x-y+1=0可得直线的斜率k,进而由直线的倾斜角与斜率的关系tanθ=k,计算可得答案.

解答 解:根据题意,设该直线的倾斜角为θ,(0°≤θ<180°)
直线方程x-y+1=0,其斜率k=1,
有tanθ=k=1,解可得θ=45°,
故选:B.

点评 本题考查直线的倾斜角,要掌握直线的斜率与倾斜角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知Fn(x)=(-1)0Cn0f0(x)+(-1)1Cn1fi(x)+…+(-1)nCnnfn(x),(n∈N*)(x>0),其中,fi(x)(i∈{0,1,2,…,n})是关于x的函数.
(1)若fi(x)=xi(i∈N),求关于F2(1),F2017(2)的值;
(2)若fi(x)=$\frac{x}{x+i}$(i∈N),求证:Fn(x)=$\frac{n!}{(x+1)(x+2)…(x+n)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)判断f(x)在(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出定义:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的三个判断:
①y=f(x)的定义域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$];  
②点(k,0)是y=f(x)的图象的对称中心,其中k∈Z;
③函数y=f(x)在($\frac{1}{2}$,$\frac{3}{2}$]上是增函数.
则上述判断中所有正确的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.用秦九韶算法求n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,当x=x0时的值,其算法步骤如下:
第一步,输入n,an和x的值,
第二步,v=an,i=n-1,
第三步,输入i次项系数ai
第四步,v=vx+ai,i=i-1,
第五步:判断i是否大于或等于0,若是,则返回第三步;否则,输出多项式的值v.该算法中第四步空白处应该是v=vx+ai

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:
零件的个数x(个)2345
加工的时间y(h)2.5344.5
($\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$)
(Ⅰ)在给定的坐标系中画出表中数据的散点图;
(Ⅱ)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅲ)试预测加工10个零件需要多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某班共有50名学生,通过调查发现有30人同时在张老师和王老师的朋友圈,只有1人不在任何一个老师的朋友圈,且张老师的朋友圈比王老师的朋友圈多7人,则张老师的朋友圈有43人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在圆内接四边形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ
(Ⅰ)求角β的大小
(Ⅱ)求四边形ABCD周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线l:(a2-1)x-y-2a+1=0不过第二象限,则a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案