精英家教网 > 高中数学 > 题目详情
如图,已知海岛A到海岸公路BC的距离AB=50km,B,C间的距离为100km,从A到C必须先坐船到BC上的某一点D,航速为25km/h,再乘汽车到C,车速为50km/h,记∠BDA=θ
(1)试将由A到C所用的时间t表示为θ的函数t(θ);
(2)问θ为多少时,由A到C所用的时间t最少?
考点:解三角形的实际应用
专题:应用题,解三角形
分析:(1)用θ表示出AD与BD,从而可以表示出DC,由路程除以速度得时间,建立起时间关于θ函数即可;
(2)对函数求导,研究出函数的单调性确定出θ=
π
3
时,由A到C所用的时间t最少.
解答: 解:(1)在Rt△ABD中,AB=50km,∴BD=50cotθ,AD=
50
sinθ
,∴DC=100-BD=100-50cotθ.
∴t(θ)=
2
sinθ
+2-cotθ=
2-cosθ
sinθ
+2(θ∈[arctan
1
2
π
2
));
(2)t′(θ)=
1-2cosθ
sin2θ

∴θ∈[0,
π
3
)时,t′(θ)<0;θ∈(
π
3
π
2
),t′(θ)>0
∴当θ=
π
3
时,由A到C所用的时间t最少.
点评:本题考查在实际问题中建立三角函数模型,应用三角函数模型求解用时最少的问题,求解本题的关键是对问题进行细致分析得出符合条件的函数模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和Sn能取到最大值,且满足:a9+3a11<0,a10•a11<0,对于以下几个结论:
①数列{an}是递减数列;
②数列{Sn}是递减数列
③数列{Sn}的最大项是S10
④数列{Sn}的最小的正数是S19
其中正确的结论的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形OABC是边长为1的正方形,点D在OA的延长线上,且OD=2,点P为△BCD内(含边界)的动点,设
OP
OC
OD
(α,β∈R),则α+β的最大值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,原点O在以A,B为直径的圆C外,O点到⊙C的切线长为l;
(Ⅰ)证明:l2=
OA
OB

(Ⅱ)若点A在抛物线y=x2+1上,点B在圆x2+(y-3)2=1,求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B两地相距10km,A(-5,0),B(5,0).有一种商品,A、B两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每公里的运费A地是B地的3倍.问该地居民应如何选择A地或B地购买此种商品最合算?(仅从运费的多少来考虑)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+2y+1=0,直线l2:x-y+a=0.
(1)若直线l1⊥l2,求a的值及垂足P的坐标;
(2)若直线l1∥l2,求a的值及直线l1与l2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C 的对边分别是a,b,c,若a=3,A=30°,B=45°,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C 的对边分别是a,b,c,若a=6,b=5,cosC=
4
5

(1)求边长c的大小;
(2)求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知4tan
α
2
=1-tan2
α
2
,则tanα的值为(  )
A、
1
4
B、-
1
4
C、
1
2
D、-
1
2

查看答案和解析>>

同步练习册答案