精英家教网 > 高中数学 > 题目详情

【题目】为了研究钟表与三角函数的关系,以9点与3点所在直线为x轴,以6点与12点为y轴,设秒针针尖指向位置P(x,y),若初始位置为P0 ),秒针从P0(注此时t=0)开始沿顺时针方向走动,则点P的纵坐标y与时间t(秒)的函数关系为(
A.y=sin( t+
B.y=sin( t﹣
C.y=sin(﹣ t+
D.y=sin(﹣ t﹣

【答案】C
【解析】解:以9点与3点所在直线为x轴,以6点与12点为y轴,设秒针针尖指向位置P(x,y),
若初始位置为P0 ),秒针从P0(注此时t=0)开始沿顺时针方向走动,
由于秒针每60秒顺时针转一周,故转速ω=﹣ =﹣
由于初始位置为P0 ),故经过时间t,秒针与x正半轴的夹角为﹣ t+
再由秒针的长度为|OP|=1,可得点P的纵坐标y与时间t的函数关系为y=sin(﹣ t+ ),
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0,a≠1)在区间[﹣1,2]上的最大值为8,最小值为m.若函数g(x)=(3﹣10m) 是单调增函数,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1) 求实数的值;

(2) 判断并用定义证明该函数在定义域上的单调性;

(3) 若方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知所在的平面, 的直径, 上一点,且中点, 中点.

(1)求证:

(2)求证:

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集)具有性质:对任意),两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集)具有性质,则;其中真命题有________(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0)的顶点到焦点的距离为1,过点P(0,p)作直线与抛物线交于A(x1 , y1),
B(x2 , y2)两点,其中x1>x2
(1)若直线AB的斜率为 ,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程;
(2)若 ,是否存在异于点P的点Q,使得对任意λ,都有 ⊥( ﹣λ ),若存在,求Q点坐标;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合的一个等浓二分划(即.记集合中所有数的积为,集合中所有数的积为的等浓二分划的特征数.证明:

(1)集合的等浓二分划的特征数一定为合数;

(2)若等浓二分划的特征数不为2的倍数则该特征数为的倍数.

有限集合的元素个数简记为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集其中,2,,n,,若对任意的2,,都存在,使得下列三组向量中恰有一组共线:

向量与向量

向量与向量

向量与向量,则称X具有性质P,例如2,具有性质P.

3,具有性质P,则x的取值为______

若数集3,具有性质P,则的最大值与最小值之积为______

查看答案和解析>>

同步练习册答案