精英家教网 > 高中数学 > 题目详情

【题目】f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)﹣f(x)<0,记a= ,b= ,c= ,则(
A.a<b<c
B.c<a<b
C.b<a<c
D.c<b<a

【答案】A
【解析】解:令g(x)= ,则g′(x)=
∵x>0时,xf′(x)﹣f(x)<0,
∴g(x)在(0,+∞)递减,
又log25>log24=2,1<20.2<2,0.22=0.04,
∴log25>20.2>0.22
∴a= =g(log25)<b= =g(20.2)<c= =g(0.22),
∴a<b<c,
故选:A.
令g(x)= ,则g′(x)= ,由已知得g(x)在(0,+∞)递减,由此能比较a,b,c的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,的中点,,求证: (1)

(2)∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为(
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn(n∈N*),且满足an+2Sn=2n+2.
(1)求数列{an}的通项公式;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:

按此规律,第个等式可为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|﹣ 的零点不超过4个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(ax+1)ex﹣(a+1)x﹣1.
(1)求y=f(x)在(0,f(0))处的切线方程;
(2)若x>0时,不等式f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案
关 闭