精英家教网 > 高中数学 > 题目详情
15.已知数列{an}中,a1=1,a2=6,an+2=an+1-an,则a2016=-5.

分析 a1=1,a2=6,an+2=an+1-an,可得:an+6=an

解答 解:∵a1=1,a2=6,an+2=an+1-an
∴a3=a2-a1=5,同理可得:a4=-1,a5=-6,a6=-5,a7=1,a8=6,….
∴an+6=an
则a2016=a335×6+6=-5.
故答案为:-5.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设{an}是等差数列,a1+a3+a5=9,a1=9.则这个数列的公差等于(  )
A.1B.2C.-3D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

(Ⅰ)若采用分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(Ⅱ)估算该市80岁及以上长者占全市户籍人口的百分比;
(Ⅲ)政府计划为80岁及以上长者或生活不能自理的老人每人购买1000元/年的医疗保险,为其余老人每人购买600元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用秦九韶算法求多项式f(x)=x6-5x5+6x4-3x3+1.8x2+0.35x+2,在x=-1的值时,v2的值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“x>1”是“$\frac{1}{x}<1$”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1({m∈R})$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对任意的两个正实数x1,x2,若g(x1)<f'(x2)恒成立(f'(x)表示f(x)的导数),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC=(2a-c)cosB.
(Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0),直线l:x+y-2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.
(1)求双曲线Γ的方程;
(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x+1)lnx-ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<\frac{1}{2}ln(n+1)$,n∈N*

查看答案和解析>>

同步练习册答案