精英家教网 > 高中数学 > 题目详情
11.函数f(x)=2x在点A(1,2)处切线的斜率为2ln2.

分析 求出f(x)的导数,将x=1代入f′(x)即可求出切线的斜率.

解答 解:f′(x)=2xln2,
故f′(1)=2ln2,
故切线的斜率是:2ln2,
故答案为:2ln2.

点评 本题考查了求函数的导数,考查切线的斜率问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是[1,e2-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知P:x∈R且x2+2x-3<0,已知Q:x∈R且$\frac{x+2}{x-3}$<0.
(Ⅰ)在区间(-4,4)上任取一个实数x,求命题“P且Q”为真的概率;
(Ⅱ)设在数对(a,b)中,a∈{x∈Z|P真},b∈{x∈Z|Q真},求“事件b-a∈{x|P或Q真}”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U={x∈N|y=lg(5-x)},M={x∈Z|1≤2x≤4),N={2,3},则(∁UM)∩N=(  )
A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.
(1)求数列{an}的通项公式;
(2)设${b_n}={3^n}•\sqrt{a_n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=ln|2x-1|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,a1=$\frac{1}{3},2{a_2}={a_4}$,则a5等于(  )
A.$\frac{4}{3}$B.$\frac{6}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≤-kx+4k}\end{array}\right.$(k>0)所表示平面区域的面积为S,则$\frac{{k}^{2}+1}{S}$的最小值等于(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$tan(\frac{π}{6}+α)=\frac{1}{3}$,则tan($\frac{π}3}$+2α)=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案