精英家教网 > 高中数学 > 题目详情
7.在数列{an}中,已知a1=a(a>2),且an+1=$\frac{{a}_{n}^{2}}{2({a}_{n}-1)}$(n∈N*).
(1)用数学归纳法证明:an>2(n∈N*);
(2)求证an+1<an(n∈N*).

分析 (1)运用数学归纳法,注意步骤的完整性,当n=1时,检验成立,假设当n=k(k∈N*),命题成立;证明当n=k+1也成立,注意运用假设;
(2)作差比较,即为an+1-an,化简整理,结合(1)的结论,即可得证.

解答 证明:(1)①当n=1时,a1=a>2,命题成立.
②假设当n=k(k∈N*),命题成立,即ak>2.
则当n=k+1时,ak+1-2=$\frac{{{a}_{k}}^{2}}{2({a}_{k}-1)}$-2=$\frac{({a}_{k}-2)^{2}}{2({a}_{k}-1)}$>0,
所以当n=k+1时ak+1>2也成立,
由①②得,对任意自然数n,都有an>2.
(2)an+1-an=$\frac{{a}_{n}^{2}}{2({a}_{n}-1)}$-an=$\frac{{a}_{n}(2-{a}_{n})}{2({a}_{n}-1)}$,
由(1)可知an>2>0,
即有an+1-an<0,
即an+1<an(n∈N*).

点评 本题考查不等式的证明,考查数学归纳法的运用和作差比较法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设m,n是两条不同的直线,α,β是两个不重合的平面,给出下列四个命题:
①$\left.\begin{array}{l}{m∥n}\\{m⊥α}\end{array}\right\}$⇒n⊥α;②$\left.\begin{array}{l}{α∥β}\\{m?α}\\{n?β}\end{array}\right\}$⇒m∥n;③$\left.\begin{array}{l}{α∥β}\\{m∥n}\\{m⊥α}\end{array}\right\}$⇒n⊥β;④$\left.\begin{array}{l}{m∥n}\\{m⊥α}\end{array}\right\}$⇒n∥α.
其中正确命题的序号是(  )
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=x-$\frac{1}{x}$,对任意x∈[1,+∞),f(ax)+af(x)<0恒成立,则实数a的取值范围是(  )
A.(-∞,-1)B.(-1,0)C.(-1,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:△ABC中,E、G、D、F分别是边AB、CB上的一点,且GF∥ED∥AC,EF∥AD.
求证:$\frac{BG}{BE}$=$\frac{BD}{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系中,对于双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),有下面四个结论:
(1)存在这样的点M,使得过M的任意直线都不可能与双曲线有且只有一个公共点;(2)存在这样的点M,使得过M可以做两条直线与双曲线有且只有一个公共点;
(3)不存在这样的点M,使得过M可以做三条直线与双曲线有且只有一个公共点;
(4)存在这样的点M,使得过M可以做四条直线与双曲线有且只有一个公共点.
这四个结论中,所有正确的是(1),(2),(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.表面积为S的五面体的每一个面都外切于半径为R的一个球,则这个五面体的体积为(  )
A.$\frac{1}{3}$SRB.$\frac{3}{5}$SRC.$\frac{2}{3}$SRD.$\frac{3}{2}$SR

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)在(1,+∞)上递减,且它的图象关于直线x=1对称,求不等式f(x+1)<f(2x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若m>1,a=$\sqrt{m}$-$\sqrt{m-1}$,b=$\sqrt{m+1}$-$\sqrt{m}$,则以下结论正确的是(  )
A.a>bB.a<bC.a=bD.a,b大小不定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线L:y=kx+b 和曲线y=x3-3x+1相切,则斜率k最小时直线L的方程是3x+y-1=0.

查看答案和解析>>

同步练习册答案