精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,-3),若向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{c}$=(-4,7)共线,则λ的值为-2.

分析 利用已知向量表示向量λ$\overrightarrow{a}$+$\overrightarrow{b}$,然后利用向量共线列出方程求解即可.

解答 解:向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,-3),向量λ$\overrightarrow{a}$+$\overrightarrow{b}$=(-λ+2,2λ-3),
向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{c}$=(-4,7)共线,
可得:-7λ+14=-8λ+12,解得λ=-2.
故答案为:-2.

点评 本题考查向量共线的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1、F2,若椭圆上存在点P,满足∠F1PF2=120°,则该椭圆的离心率的取值范围是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=x${\;}^{\frac{4}{3}}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.阅读下面材料,尝试类比探究函数y=x2-$\frac{1}{{x}^{2}}$的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.
阅读材料:
我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.
在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.
对于函数y=$\frac{1}{x}$,我们可以通过表达式来研究它的图象和性质,如:
(1)在函数y=$\frac{1}{x}$中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.
(2)在函数y=$\frac{1}{x}$中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;
(3)在函数y=$\frac{1}{x}$中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(-∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;
(4)由函数y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函数,可以推测出,对应的图象关于原点对称.
结合以上性质,逐步才想出函数y=$\frac{1}{x}$对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在平行四边形ABCD中,$\overrightarrow{AC}$=(3,2),$\overrightarrow{BD}$=(-1,2),则$\overrightarrow{AC}$•$\overrightarrow{AD}$等于(  )
A.1B.6C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x+2sinx
(Ⅰ)求f(-$\frac{π}{6}$)的值;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设角α的终边与单位圆相交于点P(-$\frac{3}{5}$,$\frac{4}{5}$),则sinα-cosα的值是(  )
A.-$\frac{7}{5}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},则下列结论正确的是(  )
A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知动点P到点F(1,0)的距离等于它到直线l1:x=-1的距离
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求$\frac{|k|}{|MN|}$的取值范围.

查看答案和解析>>

同步练习册答案