精英家教网 > 高中数学 > 题目详情

【题目】若方程所表示的曲线为C,给出下列四个命题:

①若C为椭圆,则1t4t

②若C为双曲线,则t4t1

③曲线C不可能是圆;

④若C表示椭圆,且长轴在x轴上,则1t.

其中正确的命题是________(把所有正确命题的序号都填在横线上)

【答案】①②

【解析】试题分析:据椭圆方程的特点列出不等式求出t的范围判断出错,据双曲线方程的特点列出不等式求出t的范围,判断出对;据圆方程的特点列出方程求出t的值,判断出错;据椭圆方程的特点列出不等式求出t的范围,判断出错.解:若C为椭圆应该满足(4-t)(t-1)04-t≠t-1

1t4t≠错,若C为双曲线应该满足(4-t)(t-1)<0t4t1对,当4-t=t-1t=表示圆,故错,若C表示椭圆,且长轴在x轴上应该满足4-tt-101<t<,因此错,故填写

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在轴上,且椭圆的焦距为2.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点的直线与椭圆交于两点,过轴且与椭圆交于另一点 为椭圆的右焦点,求证:三点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某年级举办团知识竞赛.四个班报名人数如下:

班别

人数

45

60

30

15

年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.

(Ⅰ)求各班参加竞赛的人数;

(Ⅱ)若班每位参加竞赛的同学对每个题目答对的概率均为,求班恰好有2位同学获得奖品的概率;

(Ⅲ)若这10个题目,小张同学只有2个答不对,记小张答对的题目数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的等比数列{an}中,a4与a14的等比中项为 ,则2a7+a11的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an= (n∈N* , n≥2),数列{bn}满足关系式bn= (n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m(m为常数,且2m3),设每个水杯的出厂价为x(35x41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.

(1)求该工厂的日利润y()与每个水杯的出厂价x()的函数关系式;

(2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个粮库要向A,B两镇运送大米,已知甲库可调出100 t大米,乙库可调出80 t大米,A镇需70 t大米,B镇需110 t大米.两库到两镇的路程和运费如下表:

这两个粮库各运往A,B两镇多少t大米,才能使总运费最省?此时总运费是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3 an(n∈N*),数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn +m﹣1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy24x的焦点为F过点F的直线lC相交于AB两点|AB|8求直线l的方程.

查看答案和解析>>

同步练习册答案