精英家教网 > 高中数学 > 题目详情
定积分
2
1
1+x2
x
dx的值是(  )
A、
3
2
+ln2
B、
3
4
C、3+ln2
D、
1
2
考点:定积分
专题:计算题,导数的概念及应用
分析:求出被积函数的原函数,直接代入积分上限和积分下限后作差得答案.
解答: 解:
2
1
1+x2
x
dx=
2
1
(
1
x
+x)dx
=∫
2
1
1
x
dx
+∫
2
1
xdx

=lnx
|
2
1
+
1
2
x2
|
2
1
=ln2-ln1+
1
2
×22-
1
2
×12
=
3
2
+ln2

故选:A.
点评:本题考查了定积分,关键是求出被积函数的原函数,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(x2-
1
x
6的二项展开式中含x6的系数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S8=32,则a2+a7=(  )
A、1B、4C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象过点(2,0),那么函数y=f(x+3)-1的图象一定过下面点中的(  )
A、(-1,1)
B、(1,-1)
C、(-1,-1)
D、(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,x),
b
=(x,3),若
a
b
,则|
a
|=(  )
A、1
B、
2
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2x-3
x-2
的定义域是(  )
A、[
3
2
,+∞)
B、[
3
2
,2)∪(2,+∞)
C、(
3
2
,2)∪(2,+∞)
D、(-∞,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|x2-x-2=0},B={y|y=x+1,x∈A},则∁U(A∩B)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=-2sin2x+2cosx+2;
(2)y=3cosx-
3
sinx,x∈[0,
π
2
];
(3)y=sinx+cosx+sinxcosx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:5x+3y=0和l2:5x-3y=0,写出两个以直线l1和l2为渐近线的双曲线标准方程.

查看答案和解析>>

同步练习册答案