精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,定义椭圆上的点的“伴随点”为.

(1)求椭圆上的点的“伴随点”的轨迹方程;

(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;

(3)当 时,直线交椭圆 两点,若点 的“伴随点”分别是 ,且以为直径的圆经过坐标原点,求的面积.

【答案】(1) ;(2);(3) .

【解析】试题分析:(1)利用相关点代入法求解;(2)先由已知求得椭圆方程为 ,设

;(3)设, 1)当直线的斜率存在时,设方程为

由以 为直径的圆经过原点

,又到直线的距离 ;2) 当直线的斜率不存在时,设方程为

的面积是定值 .

试题解析:(1)解.设)由题意 ,又

,从而得

(2)由,得.又,得.

在椭圆上, ,且

由于 的取值范围是

(3) 设,则;

1)当直线的斜率存在时,设方程为, 由

; 有

由以为直径的圆经过坐标原点O可得:

整理得:

将①式代入②式得: ,

又点到直线的距离

所以

2) 当直线的斜率不存在时,设方程为

联立椭圆方程得;代入,解得,从而,综上: 的面积是定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列各组函数中表示同一函数的是(
①f(x)= 与g(x)=x
②f(x)=|x|与g(x)=
③f(x)=x0与g(x)=
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.
A.①③
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)在R上为奇函数,当x>0时,f(x)=3x2﹣9,则f(﹣2)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个边长为的正三角形和半圆组成的图形,现把沿直线AB折起使得与圆所在平面垂直,已知点C是半圆的一个三等分点(靠左边一点),点E是线段PB上的点,(1)当点EPB的中点时,在圆弧上找一点Q,使得平面;(2)当二面角的正切值为时,求BE的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)要使甲厂有盈利,求产量x的范围;
(3)甲厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1F2分别是椭圆E ab0)的左、右焦点,过点F1的直线交椭圆EAB两点,|AF1|=3|BF1|,若cosAF2B=,则椭圆E的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦距为2的椭圆W ab0)的左、右焦点分别为A1A2,上、下顶点分别为B1B2,点Mx0y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1MA2MB1MB2的斜率之积为

1)求椭圆W的标准方程;

2)如图所示,点AD是椭圆W上两点,点A与点B关于原点对称,ADAB,点Cx轴上,且ACx轴垂直,求证:BCD三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期中央电视台播出的《中国诗词大会》火遍全国.某选拔赛后,随机抽取100名选手的成绩,按成绩由低到高依次分为第1,2,3,4,5组,制成频率分布直方图如下图所示:

(I)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;

(II)在(I)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园有一个直角三角形地块,现计划把它改造成一块矩形和两块三角形区域.如图,矩形区域用于娱乐城设施的建设,三角形BCD区域用于种植甲种观赏花卉,三角形CAE区域用于种植乙种观赏花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲种花卉每平方千米造价1万元,乙种花卉每平方千米造价4万元,设OE=x千米.试建立种植花卉的总造价为y(单位:万元)关于x的函数关系式;求x为何值时,种植花卉的总造价最小,并求出总造价.

查看答案和解析>>

同步练习册答案