精英家教网 > 高中数学 > 题目详情
2.函数f(x)=($\frac{1}{5}$)${\;}^{{x}^{2}+ax}$在区间[1,2]上是单调减函数,则实数a的取值范围是(  )
A.a≤-4B.a≤-2C.a≥-2D.a>-4

分析 先求出二次函数的对称轴方程,再根据二次函数的图象和性质列出不等式求解.

解答 解:记u(x)=x2+ax=(x+$\frac{a}{2}$)2-$\frac{a^2}{4}$,
其图象为抛物线,对称轴为x=-$\frac{a}{2}$,且开口向上,
∵函数f(x)=($\frac{1}{5}$)${\;}^{{x}^{2}+ax}$在区间[1,2]上是单调减函数,
∴函数u(x)在区间[1,2]上是单调增函数,
而u(x)在[-$\frac{a}{2}$,+∞)上单调递增,
所以,-$\frac{a}{2}$≤1,解得a≥-2,
故选C.

点评 本题主要考查了指数型复合函数的单调性,涉及二次函数的图象和性质,体现了数形结合的解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为(  )
A.{-2,0,4}B.{-2,0,2,4}C.$\left\{{\left.{y\left|{y≥}\right.-\frac{9}{4}}\right\}}\right.$D.{y|0≤y≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=20.3,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{2}{3}$,则a、b、c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn=an-1(a>0,且a≠1),且6a1,a3,a2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+1}}{({a}_{n}+1)({a}_{n+1}+1)}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知变量x、y满足:$\left\{\begin{array}{l}{x≥0}\\{x+3≥2y}\\{y≥2x}\end{array}\right.$,则z=($\sqrt{2}$)x+y的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.求函数f(x)=2${\;}^{\frac{{x}^{2}+1}{{x}^{2}-1}}$的值域为(0,$\frac{1}{2}$]∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.i为虚数单位,则i(1-$\sqrt{3}$i)=(  )
A.$\sqrt{3}$-iB.$\sqrt{3}$+iC.-$\sqrt{3}$-iD.-$\sqrt{3}$+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式(m+1)x2-4x+1≤0(m∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的离心率为$\frac{\sqrt{2}}{2}$,A,B分别为左、右顶点,F2为其右焦点,P是椭圆C上异于A,B的动点,且$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为-2.
(1)求椭圆C的方程;
(2)若过左焦点F1的直线交椭圆于M,N两点,求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范围.

查看答案和解析>>

同步练习册答案