精英家教网 > 高中数学 > 题目详情
13.f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a(x<1)}\\{{a}^{x}(x≥1)}\end{array}\right.$是定义在(-∞,+∞)上是减函数,则a的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{3}$)B.(0,$\frac{1}{3}$)C.(0,$\frac{1}{6}$]D.($\frac{1}{3}$,1)

分析 由题意根据函数的单调性可得列出不等式组,由此求得a的范围.

解答 解:由题意可得$\left\{\begin{array}{l}0<a<1\\ 3a-1<0\\ 7a-1≥a\end{array}\right.$,求得$\frac{1}{6}$≤a<$\frac{1}{3}$,
故选:A.

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log3(x+a),g(x)=log3(-x+2a-$\frac{1}{2}$),且f(4)-f(1)=1.
(1)求a的值;
(2)令F(x)=f(x)+g(x),判断函数F(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平行六面体ABCD-A1B1C1D1中,M为AC与D的交点,若$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{a}$,$\overrightarrow{A{{\;}_{1}D}_{1}}$=$\overrightarrow{b}$,$\overrightarrow{{A}_{1}A}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}表示向量$\overrightarrow{{C}_{1}M}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l过点M(-5,-5)且和圆C:x2+y2+4y-21=0相交于A,B;若OA⊥OB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若f(x)=$\frac{x-1}{x+1}$,则dy|x=1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若指数函数y=ax在x∈[-1,1]内的最大、最小值相差为1,则a=$\frac{±1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在平面直角坐标系中,边长为an的一组正三角形AnBn-1Bn的底边Bn-1Bn依次排列在x轴上(B0与坐标原点重合).设{an}是首项为a,公差为d的等差数列,若所有正三角形顶点An在第一象限,且均落在抛物线y2=2px(p>0)上,则$\frac{a}{d}$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|0<x<1},B={x|0<x<3},那么“m∈A”是“m∈B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示曲线C,有下列命题①若曲线C为椭圆,则1<t<4,②若曲线C为双曲线,则t<1或t>4,③曲线C不可能是圆,④若曲线C表示椭圆且长轴在x轴,则$1<t<\frac{3}{2}$,则以上命题正确的有(  )
A.2个B.3个C.1个D.4个

查看答案和解析>>

同步练习册答案