精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分分)

如图,平行四边形中, 平面 ,点中点,连结

)若 ,求证:平面平面

)若,试探究在直线上有几个点,使得,并说明理由.

【答案】详见解析

【解析】试题分析:1)要证明平面平面,即证明平面,进而转证线线垂直即可;2假设边上存在使得,则连结,必有,故问题转化为:在边上是否存在点,使得.由平面几何知识,问题又可转化为:以为直径的圆与有几个交点.

试题解析:

)证明:当 时,

是平行四边形, 中点,

又∵平面 平面

平面

又∵平面

∴平面平面

)假设边上存在使得,则连结,必有,故问题转化为:在边上是否存在点,使得.由平面几何知识,问题又可转化为:以为直径的圆与有几个交点.

∴以为直径的圆圆心到直线的距离,半径为

易知当时,以为直径的圆与无交点,

时,以为直径的圆与有且只有一个交点,

时,以为直径的圆与个交点.

故当时,直线上不存在点,使得

时,直线上存在一个点,使得

时,直线上存在个点,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1、x2 , 方程f(x)=m有两个不同的实根x3、x4 . 若把这四个数按从小到大排列构成等差数列,则实数m的值为(
A.
B.
C.
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:

(1)求出表中的值,并补全频率分布直方图;

(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查, 再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海域的东西方向上分别有A,B两个观测点(如图),它们相距海里.现有一艘轮船在D点发出求救信号,经探测得知D点位于A点北偏东45°,B点北偏西60°,这时,位于B点南偏西60°且与B点相距海里的C点有一救援船,其航行速度为30海里/小时.

(1)求B点到D点的距离BD;

(2)若命令C处的救援船立即前往D点营救,求该救援船到达D点需要的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设

(1)求函数的解析式及单调递增区间;

(2)在中,分别为内角的对边,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中公差d≠0,有a1+a4=14,且a1a2a7成等比数列.

(Ⅰ)求{an}的通项公式an与前n项和公式Sn

(Ⅱ)令bn= (k<0),若{bn}是等差数列,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,平面平面,且点上.

)求证:

)求三棱锥的体积

)设点在线段上,且满足,试在线段上确定一点,使得平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点与两个定点 的距离之比等于5.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程.

查看答案和解析>>

同步练习册答案