精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)上一点Q(2,t)到抛物线C的焦点F的距离为$\frac{5}{2}$.
(1)求抛物线C的方程;
(2)若P(x0,y0)(x0>2)是抛物线C上的动点,点M,N在y轴上,圆(x-1)2+y2=1内切于△PMN,求△PMN的面积的最小值,并求出此时P点的坐标.

分析 (1)由已知条件推导出2+$\frac{p}{2}$=$\frac{5}{2}$,由此能求出抛物线的方程.
(2)设P(x0,y0),R(0,b),N(0,c),且b>c,则直线PR的方程可得,由题设知,圆心(1,0)到直线PR的距离为1,把x0,y0代入化简整理可得(x0-2)b2+2y0b-x0=0,同理可得(x0-2)c2+2y0c-x0=0,进而可知b,c为方程(x0-2)x2+2y0x-x0=0的两根,根据求根公式,可求得b-c,进而可得△PRN的面积的表达式,根据均值不等式可知当x0=4时面积最小,进而求得点P的坐标.

解答 解:(1)∵抛物线C:y2=2px(p>0),
在此抛物线上一点M(2,m)到焦点的距离是3.
∴抛物线准线方程是x=-$\frac{p}{2}$,…(1分)
2+$\frac{p}{2}$=$\frac{5}{2}$,解得p=1…(3分)
∴抛物线的方程是y2=2x.…(4分)
(2)设P(x0,y0),R(0,b),N(0,c),且b>c,
故直线PR的方程为(y0-b)x-x0y+x0b=0.
由题设知,圆心(1,0)到直线PR的距离为1,
即$\frac{|{y}_{0}-b+{x}_{0}b|}{\sqrt{({y}_{0}-b)^{2}+{{x}_{0}}^{2}}}$=1,注意到x0>2,化简上式,得(x0-2)b2+2y0b-x0=0,
同理可得(x0-2)c2+2y0c-x0=0,
由上可知,b,c为(x0-2)x2+2y0x-x0=0的两根,根据求根公式,可得 b-c=$\frac{\sqrt{4{y}_{0}^{2}+4{x}_{0}({x}_{0}-2)}}{{x}_{0}-2}$=$\frac{2{x}_{0}}{{x}_{0}-2}$,
故△PRN的面积为
S=$\frac{1}{2}$( b-c )x0=$\frac{{{x}_{0}}^{2}}{{x}_{0}-2}$=(x0-2)+$\frac{4}{{x}_{0}-2}$+4≥2$\sqrt{({x}_{0}-2)(\frac{4}{{x}_{0}-2})}$+4=8,
等号当且仅当x0=4时成立.此时点P的坐标为 ( 4,2$\sqrt{2}$)或 ( 4,-2$\sqrt{2}$),
综上所述,当点P的坐标为 ( 4,2$\sqrt{2}$)或 ( 4,-2$\sqrt{2}$)时,△PRN的面积取最小值8

点评 本题主要考查了抛物线的标准方程和直线与抛物线的关系.直线与圆锥曲线的问题常涉及到圆锥曲线的性质和直线的基本知识点,如直线被圆锥曲线截得的弦长、弦中点问题,垂直问题,对称问题.与圆锥曲线性质有关的量的取值范围等是近几年命题的新趋向.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\left\{\begin{array}{l}{|x-1|-2}&{|x|≤1}\\{\frac{1}{1+{x}^{2}}}&{|x|>1}\end{array}\right.$,若f(a)=$\frac{1}{5}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=(1+ax2•a-x(a>0,a≠1)是(  )
A.奇函数B.偶函数
C.既是奇函数,又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx+a(x-1)2,其中a∈R.
(1)若f(x)在x=e处的切线斜率为1,求a;
(2)若a>0,g(x)=f(x)-x+1,求g(x)在区间[1,2]的最小值;
(3)令h(x)=f(x)-ax2,对y=h(x)上任意不同的两点,A(x1,y1),B(x2,y2)直线AB的斜率为k,若x1+x2+k>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线xsinθ+ycosθ-m=0(0∈R)与圆(x-3)2+(y-4)2=4相切,则实数m的最小值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.四位同学在研究函数f(x)=$\frac{1{+x}^{2}}{1{-x}^{2}}$的性质时,分别给出下面四个结论:
①f(x)为偶函数;
②f(2)+f(3)+f(4)…+f(10)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{10}$)=0;
③f(x)在区间(1,+∞)单调递增
④f(x)的值域为(-∞,0)∪[1,+∞)
你认为上述四个结论中正确的有①②③.(填写正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当x$>\frac{1}{2}$时,函数y=x+$\frac{8}{2x-1}$的最小值为(  )
A.$\frac{9}{2}$B.4C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\left\{\begin{array}{l}{1+{(\frac{1}{2})}^{x},(x>0)}\\{2{x}^{2}+3,(x≤0)}\end{array}\right.$的值域为(1,2)∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|$\frac{x+1}{x-2}$≥0},B={x|x2+(1-a)x-a<0}(a>0),若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案