精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCDBC=CD=2AC=4∠ACB=∠ACD=FPC的中点,AF⊥PB

1)求PA的长;

2)求二面角B﹣AF﹣D的正弦值.

【答案】122

【解析】1)如图,连接BDAC于点O

∵BC=CDAC平分角BCD∴AC⊥BD

O为坐标原点,OBOC所在直线分别为x轴、y轴,

建立空间直角坐标系O﹣xyz

OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3

∵OD=CDsin=

可得A0﹣30),B00),C010),D00

由于PA⊥底面ABCD,可设P0﹣3z

∵FPC边的中点,∴F0﹣1),由此可得=02),

=3﹣z),且AF⊥PB

=6﹣=0,解之得z=2(舍负)

因此,=00﹣2),可得PA的长为2

2)由(1)知=30),=30),=02),

设平面FAD的法向量为=x1y1z1),平面FAB的法向量为=x2y2z2),

=0=0,取y1==3﹣2),

同理,由=0=0,解出=32),

向量的夹角余弦值为cos===

因此,二面角B﹣AF﹣D的正弦值等于=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.

1)①根据图中数据,求出月销售额在小组内的频率.

②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.

2)该公司决定从月销售额为的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数),ABC上的动点,且满足O为坐标原点),以原点O为极点,x轴的正半轴为极轴建立坐标系,点D的极坐标为.

1)求椭圆C的极坐标方程和点D的直角坐标;

2)利用椭圆C的极坐标方程证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区工会利用“健步行”开展明年健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了1000名会员,统计了当天他们的步数,并将样本数据分为九组,整理得到如下频率分布直方图:

1)从当天步数在的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于220分的概率;

2)求该组数据的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点分别为,其短半轴长为.

(1)求椭圆的方程;

(2)设不经过点的直线与椭圆相交于两点.若直线的斜率之和为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心在直线

1)求圆C的方程.

2)过点的直线与圆C交于AB两点,问:在直线上是否存在定点N,使得分别为直线ANBN的斜率)恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50,A类轿车有10


轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

1)求下表中z的值;

2)用随机抽样的方法从B类舒适型轿车中抽取8,经检测它们的得分如下:94,86,92,96,87,93,90,82把这8辆轿车的得分看作一个总体,从中任取一个得分数记这8辆轿车的得分的平均数为,定义事件{,且函数没有零点},求事件发生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,平面..点的交点,点在线段上且.

(1)证明:平面

(2)求直线与平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.现以边AC的中点D为坐标原点,平面ABC内垂直于AC的直线为轴,直线AC轴,直线DA1轴建立空间直角坐标系,解决以下问题:

(1)求异面直线ABA1C所成角的余弦值;

(2)求直线AB与平面A1BC所成角的正弦值.

查看答案和解析>>

同步练习册答案