精英家教网 > 高中数学 > 题目详情

【题目】在每年的3月份,濮阳市政府都会发动市民参与到植树绿化活动中去林业管理部门为了保证树苗的质量都会在植树前对树苗进行检测,现从甲、乙两种树苗中各抽测了株树苗,量出它们的高度如下(单位:厘米),

甲:37,21,31,20,29,19,32,23,25,33;

乙:10,30,47,27,46,14,26,10,44,46.

(1)画出两组数据的茎叶图并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;

(2)设抽测的株甲种树苗高度平均值为,将这株树苗的高度依次输人,按程序框(如图)进行运算,问输出的大小为多少?并说明的统计学意义,

【答案】(1)见解析;(2)见解析

【解析】分析:(1)画出茎叶图,通过图能判断甲,乙两种树苗的平均高度、分散情况、中位数的值.

(2)直接利用均值与方差公式求解,说明几何意义即可.

详解:(1)茎叶图:

统计结论:(答案不唯一,任意两个即可)

①甲种树苗的平均高度小于乙种树苗的平均高度;

②甲种树苗比乙种树苗长得整齐;

③甲种树苗的中位数为,乙种树苗的中位数为

④甲种树苗的高度基本上是对称的,而且大多数集中在平均数附近,乙种树苗的高度分布比较分散.

(2)根据十个数据求得:

由框图可求得

表示株甲种树苗高度的方差.越小,表示长得越整齐,值越大,表示长得越参差不齐.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,且=9S6=60

(I)求数列{an}的通项公式;

II)若数列{bn}满足bn+1bn=n∈N+)且b1=3,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中, ,且.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下面结论正确的是( )

A. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

B. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

C. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

D. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,P是正方形ABCD对角线的交点,GPB的中点.

(1)根据三视图,画出该几何体的直观图.

(2)在直观图中,①证明:PD∥平面AGC;

②证明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列满足 .

(Ⅰ)当时,求证:数列为等差数列并求

(Ⅱ)证明:对于一切正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.

(1)求取到的2个球中恰好有1个是黑球的概率;

(2)求取到的2个球中至少有1个是红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和记为 ,点在直线上,

(1)求数列的通项公式;

(2)设 是数列的前项和,求

查看答案和解析>>

同步练习册答案