【题目】关于数列,给出下列命题:①数列满足,则数列为公比为2的等比数列;②“,的等比中项为”是“”的充分不必要条件:③数列是公比为的等比数列,则其前项和;④等比数列的前项和为,则,,成等比数列,其中假命题的序号是( )
A.②B.②④C.①②④D.①③④
科目:高中数学 来源: 题型:
【题目】上海地铁四通八达,给市民出行带来便利,已知某条线路运行时,地铁的发车时间间隔(单位:分字)满足:,,经测算,地铁载客量与发车时间间隔满足,其中.
(1)请你说明的实际意义;
(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求最大净收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.
(I)求圆的普通方程及其极坐标方程;
(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,集合,集合.
(1)用列举法表示集合C;
(2)设集合C的含n个元素所有子集为,记有限集合M的所有元素和为,求的值;
(3)已知集合P、Q是集合C的两个不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合对的个数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为80万元,同时将受到环保部门的处罚,第一个月罚4万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面可以大大降低原料成本,据测算,添加回收净化设备并投产后的前4个月中的累计生产净收入g(n)是生产时间个月的二次函数是常数,且前3个月的累计生产净收入可达309万元,从第5个月开始,每个月的生产净收入都与第4个月相同,同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励120万元.
(1)求前6个月的累计生产净收入g(6)的值;
(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造的纯收入.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、、是三条不同的直线,、、是三个不同的平面,给出下列四个命题:
①若,,,,,则;
②若,,则;
③若,是两条异面直线,,,,且,则;
④若,,,,,则.
其中正确命题的序号是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足.
(1)证明:数列为等差数列;
(2)设数列的前n项和为,若,且对任意的正整数n,都有,求整数的值;
(3)设数列满足,若,且存在正整数s,t,使得是整数,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com