【题目】在直角坐标系中,直线的参数方程为(,为参数),曲线的参数方程为(为参数),直线与曲线交于,两点.
(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求曲线的极坐标方程;
(2)若,点,求的值.
科目:高中数学 来源: 题型:
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度()的7组观测数据,其散点图如所示:
根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和温度的回归方程(回归系数结果精确到);
(2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括与),估计该品种一只昆虫的产卵数的范围.(参考数据:,,,,.)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 (单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益 (单位:万元) | 2 | 3 | 2 | 7 |
由表中的数据显示, 与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数的最小正周期是;
②终边在轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有三个公共点;
④把函数的图象向右平移个单位得到的图象;
⑤函数在上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为等差数列的公差,数列的前项和,满足(),且,若实数(,),则称具有性质.
(1)请判断、是否具有性质,并说明理由;
(2)设为数列的前项和,若是单调递增数列,求证:对任意的(,),实数都不具有性质;
(3)设是数列的前项和,若对任意的,都具有性质,求所有满足条件的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,,,动点满足:直线与直线的斜率之积恒为,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)若点位于第一象限,过点,分别作直线,直线,直线,交于点.
①若点的横坐标为-1,求点的坐标;
②直线与曲线交于点,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,有下列五个命题:
①若存在反函数,且与反函数图象有公共点,则公共点一定在直线上;
②若在上有定义,则一定是偶函数;
③若是偶函数,且有解,则解的个数一定是偶数;
④若是函数的周期,则,也是函数的周期;
⑤是函数为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为 ( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,如果存在实数(,且不同时成立),使得对恒成立,则称函数为“映像函数”.
(1)判断函数是否是“映像函数”,如果是,请求出相应的的值,若不是,请说明理由;
(2)已知函数是定义在上的“映像函数”,且当时,.求函数()的反函数;
(3)在(2)的条件下,试构造一个数列,使得当时,,并求时,函数的解析式,及的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com