精英家教网 > 高中数学 > 题目详情
1.如果执行下面的程序框图,输入n=6,m=4,求输出的p=?(要求必要的书写,不能只有数字!)

分析 讨论k从1开始取,分别求出p的值,直到不满足k<4,退出循环,从而求出p的值,解题的关键是弄清循环次数.

解答 解:第一次:k=1,p=1×3=3;
第二次:k=2,p=3×4=12;
第三次:k=3,p=12×5=60;
第四次:k=4,p=60×6=360
此时不满足k<4.
所以p=360.
故答案为:360.

点评 本题主要考查了直到形循环结构,注意循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.若f(x)是定义在(0,+∞),对一切x,y>0,满足f(xy)=f(x)+f(y),且当x>1时,f(x)>0
(1)证明:f(x)在(0,+∞)是增函数;
(2)若f(2)=1,解不等式f(x+3)-f($\frac{1}{3}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,则m的取值范围是(  )
A.-4≤m≤4B.-4<m<4且m≠0C.m>4或m<-4D.0<m<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=x3-3x2-9x+5的极值情况是(  )
A.在x=-1处取得极大值,但没有最小值
B.在x=3处取得极小值,但没有最大值
C.在x=-1处取得极大值,在x=3处取得极小值
D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在单位圆O的某一直径AB上随机地取一点Q,则过点Q且与该直径垂直的
弦的长度不超过1的概率(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.1-$\frac{\sqrt{3}}{2}$D.1-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-3x)ex
(1)求函数f(x)的图象在点(1,f(1))处的切线方程;
(2)当k<1时,判断方程$\frac{xf(x)}{{e}^{x}}$+x=kx-4的实根个数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了得到函数y=sin3x+cos3x图象,可将函数$y=\sqrt{2}sin3x$图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向右平移$\frac{π}{4}$个单位D.向左平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα是关于x的方程2x2-x-1=0的一个实根,且α是第三象限角.
(1)求$\frac{2sinα-cosα}{sinα+cosα}$的值;
(2)求cosα+sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,过F2的直线l交C于M,N两点,若△MF1N的周长为8.
(1)求椭圆C的标准方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

同步练习册答案