精英家教网 > 高中数学 > 题目详情

在直角坐标系中,直线的方程为,曲线的参数方程为
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;
(2)设点是曲线上的一个动点,求它到直线的距离的最小值.

(1)点在直线上;(2)

解析试题分析:(1)因为的极坐标为将极坐标转化为普通方程中对应的点为,所以可知点P在直线上.
(2)求点是曲线上的一个动点,求它到直线的距离的最小值.解法一是计算曲线的参数方程中的点到直线的距离,再用最值得到结论.解法二是将曲线的参数方程转化为普通方程,然后利用平行于的直线与曲线C相切,再计算两平行间的距离即可得到结论.
试题解析:(1)把极坐标系下的点化为直角坐标得
满足方程在直线上.
(2)解法一、因为点是曲线上的点,故可设点的坐标为
所以点到直线的距离 
所以当时,取得最小值
解法二、曲线的普通方程为:
平移直线使之与曲线相切,设
 得:,即:
,解得:
曲线上的点距离的最小值.
考点:1.极坐标、参数方程的知识.2.直线与椭圆的位置关系.3.点与直线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

极坐标与参数方程: 已知点P是曲线上一点,O为原点.若直线OP的倾斜角为,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,设动点PQ都在曲线Cθ为参数)上,且这两点对应的参数分别为θαθ=2α(0<α<2π),设PQ的中点M与定点A(1,0)间的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为为参数),点Q的极坐标为
(1)化圆C的参数方程为极坐标方程;
(2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线 的直角坐标方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线向右平移h个单位,所得直线与圆C相切,求h.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为ρcosa,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系中,直线的参数方程是为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为
(Ⅰ)求直线的极坐标方程;
(Ⅱ)若直线与曲线相交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为ρsin(θ-)=6,圆C的参数方程为(θ为参数),求直线l被圆C截得的弦长.

查看答案和解析>>

同步练习册答案